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Modelling Videos of Physically
Interacting Objects

A strong prior in human cognition is the notion of objects. Humans exhibit excellent
predictive capabilities in dynamical settings, precisely estimating future object trajec-
tories despite complex physical interactions. In machine learning, designing models
capable of making similarly accurate estimates about future states and obtaining
a useful representation of the world in an unsupervised fashion is a challenging
research question. Building models with inductive biases inspired by those of human
perception presents a promising path towards solving these problems. This thesis
presents STOVE, a novel machine learning architecture capable of modelling videos
of physically interacting objects. STOVE combines recent advances in unsupervised
object-aware image modelling and relational physics modelling to yield a non-linear
state space model, which explicitly reasons about objects and their interactions. It
is trained from pixels without any external supervision. We demonstrate STOVE
on simulated videos of physically interacting objects, where it clearly improves
upon previous unsupervised and object-aware approaches to video modelling, even
approaching the performance of a supervised baseline. STOVE’s predictions ex-
hibit long-term stability, and it correctly conserves the kinetic energy in one of
the prediction scenarios. Additionally, STOVE is extended to action-conditioned
video prediction, advancing video models towards more general interactions beyond
physical simulations.
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Modellierung von Videos
physikalisch interagierender
Objekte

Objekte sind ein wichtiger Prior menschlicher Wahrnehmung. Zusätzlich zeigen
Menschen exzellente prädiktive Fähigkeiten in dynamischen Situationen. Selbst
bei komplexen physikalischen Interaktionen treffen wir präzise Vorhersagen über
die Trajektorien von Objekten. Im maschinellen Lernen ist die Konstruktion von
Modellen, die nützliche Repräsentationen der Welt hervorbringen und zu akkuraten
Vorhersagen fähig sind, Gegenstand aktueller Forschung. Das Design von Model-
len mit induktiven Biases, ähnlich derer menschlicher Wahrnehmung, stellt hierbei
einen vielversprechenden Weg dar. Diese Arbeit präsentiert STOVE, einen neuartigen
Ansatz des maschinellen Lernens, um Videos physikalisch interagierender Objekte zu
modellieren. STOVE kombiniert Fortschritte unüberwachter objektorientierter Bild-
modelle und relationaler Physikmodelle, um ein nichtlineares Zustandsraummodell
zu bilden, welches explizit Objekte und ihre Interaktionen miteinbezieht. Das Modell
wird vollständig unüberwacht auf Bildpixeln trainiert. Wir zeigen anhand von Videos
physikalischer Simulationen, dass STOVE die Ergebnisse vorheriger unüberwachter
Modelle verbessern kann und sogar an die Performanz einer überwachten Base-
line herankommt. Die Vorhersagen von STOVE sind über lange Zeiträume stabil
und in einer der Anwendungsszenarien lernt STOVE korrekterweise die Erhaltung
der kinetischen Energie. Darüber hinaus wird STOVE um die aktionskonditionierte
Videovorhersage erweitert, was einen wichtigen Schritt zur Entwicklung von Video-
modellen für allgemeinere Interaktionen jenseits strikter physikalischer Simulationen
darstellt.
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1Introduction

1.1 Motivation
Humans are remarkable. Every day we solve a multitude of complex and diverse
tasks with incredible skill. When picking up new tasks, we efficiently leverage prior
experience to accelerate the learning process. We possess a complex mental model
of the world, allowing us to reason about our decisions. Human intelligence far
outranks any artificial intelligence today (Chollet, 2019; Lake et al., 2017).

Many problems of artificial intelligence may be approached with machine learning.
Over the last decade, such machine learning based approaches have seen great
progress with the advent of deep learning based architectures. Following the ex-
cellent overview of LeCun et al. (2015): In many areas of machine learning that
require highly non-linear function approximation, such as computer vision or natural
language processing, deep learning based approaches have been able to improve
upon state-of-the-art performance significantly. While previous approaches relied on
hand-designed feature extractors as input to shallow models, deep learning based
architectures can, in many cases, automatically extract complex non-linear features.
However, deep learning is not one thing, not a single model with which to solve
every problem. It is a general concept, a buzzword, which best encapsulates the
approaches taken by many machine learning models of the current wave. Its progress
has been enabled by a mix of new model architectures, advances in optimisation
methods, faster processors, and the availability of large amounts of curated data.
Current state-of-the-art deep learning architectures outperform humans on some
tasks. Considerable media attention was given to the cases of ATARI video games
(Mnih et al., 2015) or the board game GO (Silver et al., 2016, 2017).

However, as lamented by Chollet (2019), many of these models are extremely far
away from true intelligence. As defined by Legg and Hutter (2006),

“Intelligence measures an agent’s ability to achieve goals in a wide range
of environments.” (Legg and Hutter (2006))

If the goal of the artificial intelligence community truly is to achieve intelligent
systems, the current modus operandi of large parts of the community seems prob-
lematic: Intelligence has primarily been measured as skill. Skill is measured as
performance on some success metric, such as accuracy, on a narrowly defined task
for which the model has been specifically trained. In some parts of the community,
this has downright led to benchmarking races: State-of-the-art results on popular
benchmarking tasks were released by one group and then beaten by others in quick
succession.1 To be fair, this has lead to impressive improvements on these tasks.

1See paperswithcode.com/sota/image-classification-on-imagenet to get an idea of the amount of
papers and their timing on the ImageNet classification task (last accessed on 25th March, 2020).
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However today, arguably, performance on many of the popular benchmarks is satu-
rated. We may be close to the point where beating the previous state-of-the-art may
only be achieved by implicitly overfitting the model architecture to the data set, see
e. g. Recht et al. (2019).

Chollet (2019) finds fault with a different consequence of this benchmarking men-
tality. He argues that few of the improvements of the last years have resulted in
models that are more intelligent as defined above. They often require large amounts
of carefully curated and labelled data to allow for learning, are limited in their
capability to generalise knowledge to new tasks, and have no deeper understanding
of their actions, i. e. they cannot reason about their decisions or act in logically sound
ways. This is problematic beyond a philosophical debate about what high-level
goals the community should aim for. Instead, it has real-world consequences. In
many use cases, current state-of-the-art machine learning models may not be appli-
cable. For example, the creation of high-quality data sets with sufficient labelled
data may be prohibitively expensive. Of course, the problems mentioned above
have been given attention by the community – some relevant areas are transfer
learning, multi-task learning, explainable or interpretable models, learning from
weak supervisory signals, semi-supervised learning, data-efficient reinforcement
learning, or neuro-symbolic approaches combining reasoning and data – but Chollet
(2019) argues that time is ripe for a widespread disruptive change in the community
towards building more intelligent models.

It should be obvious that none of the current machine learning models can match
the versatility of human intelligence. However, Chollet (2019) proposes that we
should focus research efforts on models with similarly desirable properties. Adding
to the definition of Legg and Hutter (2006), he posits that intelligence, in the context
of artificial intelligence research, should be measured as follows:

“The intelligence of a system is a measure of its skill-acquisition effi-
ciency over a scope of tasks, with respect to priors, experience, and
generalization difficulty.” (Chollet (2019))

Lake et al. (2017) argue that seeking inspiration from humans is the way to build
such models. The artificial intelligence community may be far from creating true
intelligence, but cognitive science, neuroscience, psychology, and related disciplines
have a good understanding of many processes related to human intelligence. With
careful design, such priors of human cognition may be translated into mathematics
and computer code. In this way, machine learning models inspired by powerful
human priors can be built, going beyond the strained biological motivations of neural
networks. The manifest of Lake et al. (2017) is called “Building machines that learn
and think like people”, and we see the work presented here directly following its
philosophy.

Human vision is inherently based on the notion of objects. This strong innate
prior can already be found in infants (Zelazo and Johnson, 2013). From a physics
perspective, our vision apparatus, the eyes, is constantly bombarded with large
amounts of photons. From a machine learning perspective, this photon shower
corresponds to vast amounts of unstructured data as input to our vision model. As
humans, we do not perceive this unstructured data. Instead, we perceive a highly
structured and complex representation of our world. A fundamental entity of this
representation is the object. We perceive objects and endow them with properties or
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argue about relations between them. The notion of objects is a central ingredient
to intelligence, intricately connected to human vision. Recently, this has lead to the
development of machine learning models of images which include this notion of
objects at their core, see Section 3.1. Such models hold the promise of extracting a
variety of knowledge in an unsupervised fashion. They can infer segmentation masks,
obtain latent object representations useful for reasoning in downstream tasks, or
learn to count the total number of objects present in a scene. Importantly, they have
been shown to improve upon the generalisation capabilities of previous approaches,
e. g. generalising to unseen numbers of objects without requiring any extra training
(Eslami et al., 2016).

Another strong innate prior to human cognition is intuitive physics (McCloskey,
1983). Humans intuitively anticipate the outcome of collisions between objects or
the movement of a ball falling in gravity. In other words, we effortlessly make precise
predictions about future trajectories of physically acting objects. These physical
reasoning capabilities are essential to our successful navigation of the world. We
should therefore seek to create machine learning models, which can likewise predict
the outcomes of complex physical interactions. In the machine learning community,
a mountain of research trying to teach physics to machines has been established
over the last years, see Section 3.2. Examples of physics scenarios include teaching a
model to play billiards, non-linear physics simulations, fluid dynamics, rigid body
physics, or even real-life robotics applications. As with object-based image models,
critical innovations in model architectures were necessary to obtain models suited to
physical predictions. However, many of these approaches rely on strong supervisory
signals, such as ground truth trajectories or a simulator. While their performance is
impressive, such work often does not scale efficiently to many interesting real-world
applications, e. g. robotics, because the collection of sufficient supervisory signals is
not feasible.

Our work combines the priors of object-based vision and intuitive physics to yield a
generative model of videos trained directly on raw pixels. It seems obvious that the
inclusion of an object-based representation for image modelling is helpful for the
task of physics prediction and vice versa. Rather than restricting our modelling capa-
bilities in comparison to more general approaches, the inclusion of these inductive
biases seems to empower the performance of the model.

1.2 Contribution
This thesis presents a machine learning model which learns about objects and their
interactions from raw pixels in an unsupervised fashion. We call the model STOVE,
loosely abbreviating Structured Object-Aware Physics Prediction for Video Modelling
and Planning. A first overview of its capabilities is given in Fig. 1.1. More specifically,
a generative model of videos is proposed as a non-linear state space model. We
construct the video model as the composition of a generative unsupervised model
of static images and a graph neural network for modelling the relational dynamics
between object states. Skipping many critical details, one may give an intuitively
appealing description of this model in three sentences: The image model infers
object-specific states from single images. The dynamics model can propagate these
states forward in time, predicting future object trajectories. The image model can
also render future frames of video from the predicted states. Model training is

1.2 Contribution 3
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Figure 1.1.: This thesis introduces STOVE, a generative model of videos of physically in-
teracting objects. STOVE models images in terms of their constituent objects
using a Sum-Product Attend-Infer-Repeat image model. The image model infers
object-specific latent states, part of which explicitly correspond to object posi-
tions, velocities, and sizes. From this interpretable latent space, future latent
states may be predicted using a relational dynamics model, a graph neural
network. Image and object appearance are not hard coded but learned instead.
Likewise, STOVE can accommodate a variety of physical simulation scenarios.
The STOVE architecture corresponds to a probabilistic non-linear state space
model. Learning in this model is made tractable using amortised variational
inference.

accomplished using amortised variational inference in the probabilistic state space
model. This conceptually simple approach significantly improves upon previous
work in future frame or state prediction tasks. Notably, in one of the tasks, our
model manages to correctly preserve the kinetic energy of the system, leading to
predictions with impressive stability over long timeframes. This is in stark contrast to
previous approaches whose predictions quickly diverge to unrealistic trajectories.

More philosophically speaking and connecting to the previous discussion, STOVE
presents a counterpoint to the prevailing wisdom of approaching complex problems
with large unstructured models and lots of data. While the achievements of deep
and mostly unstructured neural networks on classic tasks of computer vision or
natural language processing are impressive, the explicit specification of model
structure informed by prior knowledge massively benefits performance and training
efficiency. Discovering structure in data remains central to machine learning, and
one may not always want to predefine models as much as we have done with
STOVE. However, STOVE demonstrates that with minimal model building, we can
achieve predictive performance drastically superior to unstructured approaches.
Note that this approach to structured problem-solving is undoubtedly distinct from
old-fashioned, hand-crafted machine learning. STOVE consists entirely of flexible
neural networks and deep probabilistic models and is adaptable to a wide range
of scenarios. It is the careful delegation of tasks among these components, the
design of the communication interfaces between them, and the formulation of the
probabilistic model, that are key components of a new wave of structured machine
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learning architectures, of which STOVE is an example.

Part of my work on this thesis resulted in the publication Structured Object-Aware
Physics Prediction for Video Modeling and Planning (Kossen et al., 2020), which
is to be published in the proceedings of the Eighth International Conference of
Learning Representations (ICLR), a highly-ranked conference in machine learning.
I am grateful for the work of my co-authors, without whom successful publication
would not have been possible. Some of the results in the publication can also be
found in this thesis. However, unless otherwise mentioned, they were obtained by
me. To avoid any uncertainties, I will attribute my co-authors whenever I discuss
results from the paper which cannot be unambiguously attributed to my own work.
Additionally, since the publication in the proceedings coincides with the submission
of this thesis, and a preprint of the paper has been available since 25th September,
2019, I will cite the paper whenever necessary to avoid self-plagiarism. The thesis
can be seen as an extended version of the paper, containing additional experiments
and insights, as well as a more thorough treatment of the theoretical background,
related works, and derivations.

1.3 Outline
Chapter 2 introduces generally useful concepts from machine learning crucial to
this thesis, focussing on machine learning for sequences, variational inference, and
sum-product networks. The chapter lays the theoretical foundation for STOVE and
the discussed related work. Chapter 3 then serves as an introduction to image,
physics, and video modelling. Previous approaches influential and tangential to
this thesis are discussed. Of special importance is Section 3.1.2, which introduces
SuPAIR, a modified version of which is used as the image model in STOVE. Likewise,
Section 3.2.2 introduces relational physics modelling using graph neural networks, a
variant of which comprises our dynamics model. Chapter 4 then formally introduces
STOVE with all the components of its non-linear state space model. Chapter 5
presents a thorough experimental evaluation of STOVE with a comparison against
baselines, an ablation study, as well as more model-specific considerations. Chapter 6
then discusses some exciting ideas for future research, before closing this thesis with
a final summary.

1.3 Outline 5





2Concepts

This chapter introduces recurrent neural networks, variational inference and the
variational autoencoder, latent state space models, as well as sum-product networks.
These concepts present the essential theoretical foundation for STOVE as well as the
discussed related works. Throughout this chapter, we will assume that the reader is
familiar with machine learning on the level of an introductory university course, i. e.
foundational knowledge of probability theory as well as basic classification, regres-
sion, clustering, and dimensionality reduction methods. Additionally, some basic
knowledge of fully connected neural networks and their training by backpropagation
is helpful. This information may be found in any machine learning textbook, e. g.
Bishop (2006) or Barber (2012).

Rather than introducing each concept wherever it appears first, we introduce them
all together here. While this leads to a more structured approach, it also results in a
decently long chapter on machine learning methods without constantly visible links
to this thesis. You may of course skip parts you are familiar with. You may even skip
concepts you are not acquainted with, as they will be referenced when needed, such
that you can then come back here.

2.1 Recurrent Neural Networks
Feed-forward neural networks are powerful function approximators. Given a single
input x ∈ RD, they learn to approximate the desired output y = f(x) ∈ RM , where
y might be the prediction for a regression or classification task. However, they have
no natural way to process a sequence of observations x1:T = {xt}Tt=1 ∈ RT×D. While
one could reshape the sequence to form a single observation x ∈ RT ·D, this approach
does not scale to long sequences, cannot handle sequences of varying length, and
discards temporal structure. Recurrent Neural Networks (RNNs) remedy this by
introducing recurrent connections, i. e. self-connections, to neural networks (Elman,
1990). Now, input sequences are consumed sequentially, e. g. such that

ht = g(xt, ht−1) (2.1)

yt = f(ht) , (2.2)

where f and g are non-linear transformations as in a feed-forward network. Often,
this is a single linear transformation followed by a non-linearity. Figure 2.1a shows
a graphical depiction of such a network. At each timestep t, the mapping g updates
a hidden state ht by considering the current position of the input xt as well as the
previous hidden state ht−1. An output yt may be produced from the hidden state
with the mapping f . This hidden state allows the RNN to model dependencies over
time, retaining and accessing information from previous timesteps. If the desired
output is again a sequence, y = {yt}Tt=1 may be concatenated, if not, y = yT does
the trick. Of course, RNNs may also be applied when the input is not a sequence but
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Figure 2.1.: (a) Illustration of a simple Recurrent Neural Network (RNN). At time t, the
function g uses the input xt to update a hidden state ht−1. Output yt is produced
using f and the current hidden state ht. (b) Procedural flow of a Long-Short
Term Memory (LSTM) network: The previous hidden state ht−1 and current
input xt are used to construct the gates ft, it, and ot, which are then used to
update the hidden and cells states ht−1 and ct−1. Figure adapted from Bonse
(2019).

the output should be, by setting xt = x, ∀t. See Goodfellow et al. (2016, Chap. 10)
or Lipton et al. (2015) for excellent ground-up introductions to RNNs, the latter
including a more thorough review of current literature.

LSTMs. While immediately intriguing, early implementations of RNNs were plagued
with problems, preventing their widespread use. Mainly, they struggled to model
long-term dependencies. As the hidden state is propagated through time, it is mul-
tiplied with the state transition matrix. In many cases, this will either shrink (or
increase) the modulus of the hidden state. Repeated applications will lead to ex-
ponentially decaying (or exploding) states and gradients. This became known as
the “vanishing gradient problem” in RNNs (Hochreiter, 1991, 1998). The intro-
duction of the Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) architecture essentially solved this problem by introducing fixed unit-weight
recurrent edges (Lipton et al., 2015). Now, for the first time, RNNs could successfully
model long-term dependencies (Hochreiter and Schmidhuber, 1997). The use of
LSTM-based models in time series modelling, natural language processing, and even
computer vision exploded. They became the de-facto standard for dealing with
sequences in neural networks, achieving state-of-the-art performance on many tasks
(Lipton et al., 2015). Formally, the update equations of the LSTM are given as

ct = ft � ct−1 + it � tanh(Whcht−1 + Wxcxt + bc)

ht = ot � tanh(ct) , (2.3)

8 Chapter 2 Concepts



where � signifies element-wise multiplication. Here, ft, it, and ot implement gating
mechanisms, given by

ft = σ(Wxfxt +Whfht−1 +bf )

it = σ(Wxixt +Whiht−1 +bi)

ot = σ(Wxoxt +Whoht−1 +bo) , (2.4)

where all matrices W and vectors b in the above Eqs. (2.3) and (2.4) are learnable
parameters and σ(x) = (1 + exp(−x))−1 is the sigmoid function. Figure 2.1b
visualises the above operations. The gates ft, it, and ot explicitly control the flow of
information between all cells of the LSTM. The forget gate ft controls the amount of
information kept from the previous cell state, the input gate it controls how much
is added to the cell state, and the output gate ot controls how much of the current
cell state is copied to the hidden state. This architecture mitigates the problem of
vanishing gradients, because the cell state is no longer subject to an exponential
decrease due to repeated multiplication with weights w < 1. Instead, the forget
gate ft dynamically modulates, how much of the previous cell state is kept. In
fact, the original LSTM did not have a forget gate, i. e. ft = 1. This formulation
makes the constant connection between cell states across time, and thereby the
non-vanishing of the gradients, more visible. The forget gate was added later by
Gers et al. (1999). The capability to explicitly forget states was found to be beneficial
to learning, without reintroducing vanishing gradients. See Lipton et al. (2015) for
a further discussion of this.

Many variations of the above Eqs. (2.3) and (2.4) exist. The exact form displayed was
introduced by Zaremba and Sutskever (2014). Other, similarly designed architectures
such as Bidirectional Recurrent Neural Networks (BRNNs) (Schuster and Paliwal,
1997), Neural Turing Machines (NTMs) (Graves et al., 2014), and Gated Recurrent
Units (GRUs) (Cho et al., 2014) exist. GRUs simplify the design of the LSTM
by discarding the output gate, which may sometimes speed up learning but has
adversarial effects on modelling complexity (Chung et al., 2014). GRUs have never
reached the popularity of LSTMs.

Only recently has the reign of LSTM-supremacy in natural language processing
begun to topple as purely self-attention-based architectures, introduced by the Trans-
former (Vaswani et al., 2017), have been able to surpass previous performance
records. However, LSTMs are still frequently used, e. g. as building blocks in larger
architectures, where they are often employed to model factorisations of distributions
p(z) =

∏
j p(zj | z1:j−1), where j indexes dimensions, as is the case in this thesis.

Section 2.3 below will give some examples of LSTMs as part of probabilistic sequence
models.

Data from many domains are inherently stochastic. The RNNs discussed so far are
deterministic architectures, and as such, they struggle to model naturally stochastic
processes, such as speech (Chung et al., 2015). Embracing this stochasticity in
model building leads to more expressive and powerful models. Recently, hybrid
architectures combining probabilistic modelling and the flexibility of RNNs have
been proposed. These approaches are enabled by recent advances in Variational
Inference (VI), which we will introduce now, before returning to our discussion of
sequence models in Section 2.3.
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2.2 Variational Inference and Variational Autoencoders

This introduction to Variational Inference (VI) will follow the textbooks of Bishop
(2006) and Barber (2012) for a classical perspective of VI. The review papers of
Zhang et al. (2018) and Blei et al. (2017) supplement this view and additionally
shed light on more recent developments. Named after Euler’s 18th-century calculus
of variations, an early application of VI is given by Mézard et al. (1987) in the
theoretical statistical physics community, where it was used to describe the global
behaviour of a lattice of locally interacting atomic spins. VI has since enjoyed an
important standing in the Bayesian modelling community to allow for posterior
inference in complex models.

Given vector-valued observations x and latent variables z, it is often feasible to
specify a conditional likelihood p(x | z), generating the data, as well as a prior over
the latent variables p(z). A recurrent object of desire in Bayesian modelling is the
distribution over the posterior of the latents

p(z | x) =
p(x | z) p(z)

p(x)
=

p(x | z) p(z)∫
p(x | z)p(z) dz

, (2.5)

which, using Bayes’ rule and assuming continuous latent variables z, may be written
in terms of the conditional likelihood and prior only. In Eq. (2.5), the computation
of the evidence, or marginal likelihood, p(x) =

∫
p(x | z) p(z) dz is exponential in

the number of latent states and its evaluation quickly grows intractable if no closed-
form solution to the integral exists (Blei et al., 2017). Even in the simple setting
of learning conditional probability tables in belief networks, latent (or missing)
variables introduce dependencies which complicate inference (Barber, 2012, p. 248).
Variational inference is a popular remedy for this intractability. Instead of the
unwieldy true posterior p(z | x), a variational distribution q(z | x) from a less
complex family of distributions is introduced. Then, a divergence between the true
posterior and the variational approximation is minimised. Such approaches lead to
a variety of inference algorithms, which turn the problem of intractable integration
into one of optimisation. Alternatively, approaches such as Markov Chain Monte
Carlo (MCMC) or Gibbs sampling are a popular way to approximate the integral
with samples. Unlike VI, sampling-based approaches usually offer convergence
guarantees with respect to the true posterior. However, many proclaim VI to be
faster and more easily scalable to larger data sets (Blei et al., 2017).

The Kullback-Leibler Divergence KL(q ‖ p) between two distributions q(z) and p(z)
is defined as

KL(q ‖ p) = Eq(z)

[
log

q(z)

p(z)

]
=

∫
q(z) log

q(z)

p(z)
dz , (2.6)

where the last equality holds only for q(z) and p(z) defined over continuous spaces.
The KL divergence is non-negative, and it is zero if and only if q(z) = p(z)∀z. It
is however not symmetric KL(q ‖ p) 6= KL(p ‖ q), which is one of the reasons it
is a divergence rather than a metric. In variational inference, we minimise the KL
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divergence between the variational distribution and the true posterior1

KL(q(z | x) ‖ p(z | x)) (2.7)

= Eq(z|x)

[
log

q(z | x)

p(z | x)

]
(2.8)

= Eq(z|x) [log q(z | x)]− Eq(z|x) [log p(x, z)] + log p(x) , (2.9)

where we have used p(x)’s independence of z for the last term. We want to minimise
the LHS of the equation but cannot evaluate it directly due to the intractabilities in
p(z | x). Likewise, the RHS of the equation contains p(x), which, lest we forget, is
the reason for this mathematical endeavour in the first place. However, because p(x)
is irrelevant to our optimisation in z, we may omit it and instead maximise

ELBO(q) = Eq(z|x) [log p(x, z)]− Eq(z|x) [log q(z | x)] , (2.10)

where we introduce the Evidence Lower Bound (ELBO). The negative ELBO is
equivalent to the KL divergence we seek to minimise up to a constant. Maximising
the ELBO therefore corresponds to minimising an upper bound to the above KL
divergence.

A different but equally popular derivation for this lower bound is given by maximum
likelihood learning in models with unobserved latent variables: We seek to maximise
the marginal likelihood, or evidence, p(x) of the data under our model. This requires
marginalisation over the latent variables z. Again, one introduces the variational
distribution q(z | x) to modify the intractable integral

log p(x) = log

∫
p(x, z) dz (2.11)

= log

∫
q(z | x)

p(x, z)

q(z | x)
dz (2.12)

= log

(
Eq(z|x)

[
p(x, z)

q(z | x)

])
(2.13)

≥ Eq(z|x)

[
log

p(x, z)

q(z | x)

]
(2.14)

= ELBO(q) , (2.15)

where Eq. (2.14) results from Jensen’s inequality (Jensen et al., 1906). We see
that both the minimisation of the KL divergence between the true posterior and the
variational approximation, as well as the maximisation of the marginal likelihood,
may be used as motivation to derive the ELBO, Eq. (2.10).

By rewriting Eq. (2.9)

log p(x) = ELBO(q) + KL(q(z | x) ‖ p(z | x)) , (2.16)

we see that the lower bound is tight if the KL divergence is 0, and therefore q = p. In
practice, this may only occur if the variational approximation q(z | x) is expressive
enough to model the true posterior p(z | x). This will often not be the case. For
example, the popular mean field approach specifies q(z | x) =

∏
j qj(zj | x), where j

1The asymmetry of the KL divergence results in various subtleties not discussed here but e. g. in
Barber (2012, Sec. 28.3).
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indexes the latent space dimensions. This leads to tractable inference but cannot
account for dependencies between the latent dimensions. Mean-field Variational
Inference (MFVI) leads to iterative optimisation algorithms, which require iteration
over the complete data set and therefore do not scale well to large data settings
(Zhang et al., 2018). Stochastic Variational Inference (SVI) (Hoffman et al., 2013)
eliminates this constraint by applying stochastic optimisation to variational inference,
essentially yielding a mini-batch compatible VI variant. However, in all of the above,
a variational distribution has to be computed for each input datum x, either by
evaluating expectations with respect to q(z | x), if they are tractable, or performing
optimisations, if they are not. Therefore, scaling MFVI to large data and complex
architectures is not without problems, i. e. see discussions in Zhang et al. (2018),
Farquhar et al. (2020), or Wu et al. (2019a).

Amortised variational inference presents a promising proposal to solve these issues.
Instead of optimising the variational distribution for each data point separately, in
amortised VI, a powerful model fφ(x) directly predicts the variational distribution.
If q(z | x;λ) is parametrised by λ, e. g. λ = {µ,σ} for a mean-field Gaussian,
evaluation of fφ directly yields fφ(x) = λ. Here, φ are the parameters of fφ to
be optimised. As the parameters φ are shared over all data instances, variational
inference is said to be amortised. Amortised VI hinges on the assumption that fφ is
flexible enough to predict the correct distribution for all x reliably. Neural networks
are a popular choice for such approximators, and amortised VI has quickly become
the default approach to combine neural networks and probabilistic frameworks
(Zhang et al., 2018). The parameters φ then correspond to the weights and biases
of the network fφ.

The Variational Autoencoder. Amortised VI was first proposed by Dayan et al.
(1995), see Marino et al. (2019), while the term was coined in Gershman and
Goodman (2014). However, its use in the Variational Autoencoder (VAE), attributed
to both Kingma and Welling (2014) and Rezende et al. (2014), popularised it. Tra-
ditionally, VI is used to allow for inference in complex probabilistic models, which
specify intricate dependencies between variables. The VAE formulates a simple prob-
abilistic model and pushes complexities into encoding and decoding networks. See
Doersch (2016) for a welcoming and easy-to-digest tutorial on VAEs and Tschannen
et al. (2018) for a more recent review paper focussed on unsupervised representation
learning. VAEs are a probabilistic architecture relying on two neural networks, a
probabilistic encoder q(z | x) and a probabilistic decoder p(x | z), where x ∈ RD,
z ∈ RL, and usually D � L. Usually, a normally distributed prior p(z) = N (0,1) on
the latent space is assumed, and both the encoder and the decoder parametrise the
means µ and variances σ2 of factorised Gaussian distributions,

qφ(z | x) = N
(
z; µφ(x),σ2

φ(x)
)

and (2.17)

pθ(x | z) = N
(
x; µθ(z),σ2

θ(z)
)
, (2.18)

where φ (and θ) are the parameters of the encoding (and decoding) networks.2

VAEs may be used for unsupervised representation learning as well as generative

2We often omit the parameters {θ,φ} for the sake of readability. Neural networks have been used
to parametrise conditional distributions well before the introduction of VAEs. An early example of this
are Mixture Density Networks (MDNs) (Bishop, 1994), which already share a lot of the philosophy of
amortised inference, i. e. for each incoming data point, a neural network directly infers the parameters
of a probabilistic model. However, MDNs predict deterministic estimates of the latent parameters.
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Figure 2.2.: (a) Graphical model of a Variational Autoencoder (VAE). Black edges indicate
the generative model p(x, z) = pθ(x | z)p(z) and red ones the inference model
qφ(z | x). Solid lines indicate dependency structures between random variables,
dashed lines the dependencies on parameters. Shaded nodes indicate observed
variables, transparent nodes latent variables. Plate notation is used to indicate
amortisation, i. e. sharing of φ over all data instances N . For the sake of
simplicity, we will not display plate notation or dependencies on parameters in
future graphical models in this thesis. Figure adapted from Kingma and Welling
(2014). (b) Illustration of a typical VAE architecture and computational flow.
Given an input image x, the encoder infers the latent distribution qφ(z | x).
From this, we sample a latent state z, which the decoder uses to predict pθ(x | z).
Next, a reconstruction x̃ of the input image may be obtained by sampling. In
fully generative mode, samples from the prior z ∼ p(z) are used as input to the
decoder. Figure inspired by Tschannen et al. (2018).

modelling of complex data.

In the setting of image modelling, a VAE may be employed to (a) produce a low-
dimensional encoding z ∼ q(z | x) given an image x, and (b) to generate an image
by sampling z ∼ p(z) from the prior and decoding it to an image x ∼ p(x | z).
Depending on the scenario, one or both of these applications may be desirable.
Figure 2.2 displays the graphical model of to the VAE as well as an additional
illustration of a typical architecture. VAE training proceeds by stochastic optimisation
of the ELBO, Eq. (2.10), for the parameters of the encoding and decoding networks
jointly. In the context of VAEs, the ELBO is often rewritten as

ELBO(q) = Eq(z|x) [log p(x | z)]−KL(q(z | x) ‖ p(z)) , (2.19)

which highlights the VAE components more clearly. As the expectations with respect
to q(z | x) are not tractable, they are usually approximated with a single sample.3

The first term Eq(z|x) [log p(x | z)] can be interpreted as a reconstruction loss of the
current image x given the latent code z ∼ q(z | x) and resulting decoding p(x | z).
To see this more clearly, let x be an image and p(x | z) a pixel-wise independent

3Approaches such as the IWAE (Burda et al., 2015) or AESMC (Le et al., 2018) use multiple
samples z to approximate the expectations with respect to q. If q is flexible enough, this results in
tighter bounds with respect to the true posterior. However, the interplay between the encoding and
decoding networks is complex and “tighter variational bounds are not necessarily better” (Rainforth
et al., 2018). See Rainforth et al. (2018) for an excellent discussion of why more samples may hinder
learning of the inference network.
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Gaussian distribution with fixed variances. Then

log p(x | z) =
∑
j

(µθ(zj)− xj)2

2σ2
+ C , (2.20)

which is the common squared loss between predicted and observed pixel values.
Maximising the ELBO minimises KL(q(z | x) ‖ p(z)), which penalises deviations
between q(z | x) and p(z). If the KL divergence is minimal and therefore 0, then
q(z | x) = p(z) and the encodings are pure noise and cannot contain any information.
This is, of course, detrimental to achieving good reconstructions from z. On the
other hand, without the KL-penalty, the network will not learn encodings which
resemble the prior distribution p(z), and therefore makes sampling from p(z) to
obtain images p(x | z) impossible. Intuitively the ELBO can be seen as representing
a trade-off between good reconstructions and conforming to the prior distribution of
the latent space.4

Optimisation of VAEs usually proceeds via (mini-batch) gradient descent, i. e. a
random subset of the data {xi}Nb

i=1 is propagated through the VAE and the parame-
ters {φ,θ} of the encoding and decoding distributions qφ(z | x) and pθ(x | z) are
updated using the cumulative gradient N−1b

∑
i∇φ,θ ELBOi, e. g. with the ADAM

optimiser (Kingma and Ba, 2015).

This then finally leads us to the computation of

∇φ,θ ELBO = ∇φ,θ Eqφ(z|x) [log pθ(x | z)]−∇φ,θ KL(qφ(z | x) ‖ p(z)) . (2.21)

For the encoding distribution, the gradient with respect to φ is problematic because

∇φ Eqφ(z) [fφ(z)] = ∇φ

∫
qφ(z)fφ(z) dz (2.22)

6=
∫
qφ(z)∇φfφ(z) dz (2.23)

= Eqφ(z) [∇φfφ(z)] . (2.24)

This means that, in the current form, we may not sample z ∼ q, evaluate the
ELBO, and calculate its gradient, because this would correspond to a calculation of
Eqφ [∇φfφ(z)]. In other words, generally, the gradient of an expectation is not the
same as the expectation of a gradient. One way of solving this, is writing

∇φEqφ(z|x) [fφ(z)] =

∫ (
(∇φqφ)

qφ
qφ
fφ + qφ(∇φfφ)

)
dz (2.25)

=

∫
qφ (fφ∇φ log qφ +∇φfφ) dz (2.26)

= Eqφ [fφ∇φ log qφ +∇φfφ] , (2.27)

4Again, many subtleties beyond the scope of this thesis are involved here. Many works on the
effects and side-effects of the KL-divergence and reconstruction loss exist, and in turn, many models
have been proposed to overcome their limitations. This discussion is often tightly linked with the aim
to construct VAEs which learn disentangled representations. A disentangled representation in a VAE is
loosely defined as a representation for which the individual dimensions of the latent space correspond
to the true generative factors of the data. The interested reader may consult Higgins et al. (2017),
Burgess et al. (2017), Mathieu et al. (2019), or Zhao et al. (2019) for a further discussion of these
topics.
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which does however have a high variance (Krishnan et al., 2015).

This is where the reparametrisation trick (Kingma and Welling, 2014) comes into play.
For some distributions, we may reparametrise z ∼ q(z | x), such that the inequality
in Eqs. (2.22) to (2.24) becomes an equality. For example, if z ∼ N (µ(x),σ2(x)),
we may write z as a deterministic function, where noise is injected via the auxiliary
variable ε,

z = µ(x) + ε� σ(x) = g(x, ε) , where ε ∼ N (0,1) = p(ε) . (2.28)

Note that for vector-valued z and ε, multiplication is element-wise. This allows us to
rewrite the expectation Eq. (2.22) as

∇φ Eqφ(z) [fφ(z)] = ∇φ

∫
qφ(z)fφ(z) dz (2.29)

= ∇φ

∫
p(ε)fφ(z) dε, using q(z) dz = p(ε) dε , (2.30)

=

∫
p(ε)∇φfφ(z) dε (2.31)

= Ep(ε) [∇φfφ(z)] . (2.32)

This is the Stochastic Gradient Variational Bayes (SGVB) estimator (Kingma and
Welling, 2014). We may therefore now sample ε ∼ p(ε), compute the ELBO, and
evaluate its gradient, obtaining a correct estimate Eq. (2.21).5 See Kingma and
Welling (2014) for a discussion of other distributions for which this is possible. Note
that this problem does not arise for the gradient with respect to θ for the decoding
network because q does not depend on θ and the above inequality Eq. (2.22)
becomes an equality. For the calculation of the KL divergence in Eq. (2.19), this
problem may be circumvented entirely if closed-form solutions of the KL divergence
exist, e. g. if both p and q are Gaussian. Such closed-form solutions additionally lead
to lower variance estimates of the gradient, which may benefit training, see e. g.
Burda et al. (2015).

2.3 State Space Models

2.3.1 Classical State Space Models

Before the rise of LSTMs, Probabilistic Graphical Models (PGMs) were the dominant
approach for modelling sequences. The presentation below largely follows the
works of Barber (2012), Bishop (2006), and Murphy (2012). Given a sequence of
observations x1:T = {xt}Tt=1 and latent states z1:T = {zt}Tt=1, we formulate a joint

5The reparametrisation trick was explained in detail because of the apparent confusion surrounding
it. Often, the question of “Why do we need the reparametrisation trick?” is answered with “Because
TensorFlow, PyTorch, etc. cannot backpropagate through stochastic variables. The reparametrisation
trick makes the latent variables deterministic and automatic backpropagation will then work fine.” This
answer is incomplete, as it reduces the reparametrisation trick to an implementation detail, when, in
fact, it is a neat and necessary mathematical trick. Without it, we would either (a) naïvely and wrongly
evaluate Eq. (2.24), which is not the desired quantity, or (b) need to resort to the high-variance
estimator Eq. (2.27).
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Figure 2.3.: Graphical model of the Hidden Markov Model (HMM) and Linear Gaussian
State-Space Model (LG-SSM) in (a) full and (b) compact representation. The
dynamics of the latent state zt are given by the transition distribution p(zt | zt−1).
Observations xt may be generated from latent states via the emission distribution
p(xt | zt). The latent state zt fully explains xt, such that xt is independent
of all other variables given zt. For the HMM, the latent states are discrete,
giving a transition matrix, while the emission distribution may be specified with
respect to discrete or continuous variables. For the LG-SSM, both transition and
emission distributions are Gaussian. From now on, we will only draw graphical
models in their compact representation.

probability distribution over both as

p(x1:T , z1:T ) = p(x1 | z1) p(z1)
T∏
t=2

p(xt | zt) p(zt | zt−1) . (2.33)

This factorisation encodes a variety of conditional (in-)dependence assumptions
between variables, which can be displayed as a graphical model, see Fig. 2.3. Namely,
at time t and given zt, the observation xt is independent of all other observations
x1:t−1,t+1:T and latent states z1:t−1,t+1:T , i. e. p(xt | x1:t−1,t+1:T , z1:T ) = p(xt | zt).
Likewise, zt−1 and zt+1 are conditionally independent given zt. In other words,
the latent state zt fully explains the current observation xt. The model is 1st
order Markov in the latent states, i. e. the latent state zt suffices to predict the
distribution over future latent states and observations. Previous latent states zt′<t

provide no additional information. However, without knowledge of the latents,
the observations xt on their own do not exhibit such independence structure, i. e.
p(xt | x1:t−1) may not be simplified any further. We can sample a sequence of latent
states from this model if the transition distribution p(zt | zt−1) is known. For each zt,
we may then sample an observation xt ∼ p(xt | zt) from the emission distribution.
The prior p(z1) encodes assumptions about the distribution of states in absence of
previous observations.

For discrete latent states, the above model is known as a Hidden Markov Model
(HMM),6 which has been successful in many sequence modelling applications such
as object tracking, bioinformatics, or speech recognition (Barber, 2012). In speech
recognition, the observations correspond to a representation of a snippet of audio
and the latent states represent the phonemes needed to transcribe the audio. In
HMMs, the transition distribution is given by a matrix p(zt = i | zt−1 = j) = At(i, j).
If this matrix is independent of time, the sequence is called stationary. Note that

6Sometimes, the term Hidden Markov Model is used to describe all sequence models with Marko-
vian latent states. However, most often, such as in the textbooks of Barber (2012), Bishop (2006), and
Murphy (2012), the term is used solely for models with discrete latent states. This is the convention
that we will conform to.
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HMMs are capable of modelling long-range dependencies because no independence
assumptions on the observations exist, i. e. the predictive distribution p(xt | x1:t−1)
depends on all previous observations. This dependency is mediated by the latent
states. Without the inclusion of latent states, long-term dependency modelling could
only be achieved by adding many individual dependencies – additional backwards
arrows {xt → xt−b}Bb=2 in the graphical model – which would lead to a combinatorial
explosion in the conditional distribution p(xt | xt−1:t−B) (Bishop, 2006, p. 608).

For continuous latent states, the above factorisation is called a Linear Gaussian State-
Space Model (LG-SSM), also called Linear Dynamical System (LDS). It corresponds to
the same graphical model, Fig. 2.3, only this time, continuous Gaussian latent states
are assumed and linear equations govern the transition and emission distributions,
such that, following Murphy (2012, Chap. 18),

zt = Atzt−1 + εt, εt ∼ N (0, Qt) (2.34)

xt = Btzt + δt, δt ∼ N (0, Rt) . (2.35)

The matrices At and Bt give the transition and emission behaviour, and noise
representing the uncertainty of observations δt and noise intrinsic to the process εt
is included (Durstewitz, 2017, p. 152f.). It follows from Eqs. (2.34) and (2.35) that
p(xt | zt) and p(zt | zt−1) are also Gaussian. Often, the LG-SSM is formulated in
additional dependency on an external control parameter or action at. One of the LG-
SSM’s main application is the estimation of the state zt given a sequence of uncertain
measurements x1:t, i. e. the position of a rocket given only noisy estimates (Barber,
2012). Estimation of p(zt | x1:t) is referred to as filtering. Given the parameters
of the system γt = {At,Bt,Qt,Rt}, filtering in LG-SSMs is tractable and leads to
the Kalman filter equations. The LG-SSM is colloquially referred to as the Kalman
filter, as filtering is its predominant use. LG-SSMs are also used heavily in traditional
forecasting, even though they might be called by a different name. For example, the
popular Autoregressive-Moving Average (ARMA) models used in time series analysis
can be represented as a special case of the LG-SSM (Murphy, 2012, p. 640).

Table 2.1 lists classic inference tasks for both HMMs and LG-SSMs. Given the
parameters of the model, all tasks are tractable for both models, assuming the size of
the HMM’s state space is reasonable. This means that, if the model assumptions hold,
the HMM and LG-SSM perform these inference tasks optimally. Often for LG-SSMs,
a physical model describing the measurement and transition process exists, and all
parameters in Eqs. (2.34) and (2.35) are known. However, parameter learning of
all or some parameters in the above equations may be performed. Learning in both
models is trivial if x1:T and z1:T are observed during training. For example, when
training an HMM for speech recognition, one may create a training set that contains
both the audio recordings (observations) and the corresponding correct phonemes
(latents). If only x1:T is observed, algorithms such as expectation maximisation may
be used to estimate stationary parameters.

Both HMMs and LG-SSMs present a classical alternative to modern RNNs such as
the LSTM. However, HMMs do not scale well to larger state spaces, as the transition
matrix and inference is quadratic in the size of the latent space (Lipton et al.,
2015). Furthermore, LG-SSMs are unsuited for applications where the assumption
of linear transitions does not hold. Extensions of LG-SSMs to non-linear transition
and emission functions exist (Wan and Van Der Merwe, 2000). However, they
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Table 2.1.: Relevant inference tasks in probabilistic sequence modelling. Exact estimation
of the below distributions is tractable in the Hidden Markov Model (HMM) and
Linear Gaussian State-Space Model (LG-SSM). Adapted from Barber (2012).

Filtering p(zt | x1:t)
Prediction p(zt | x1:t′) t′ < t
Smoothing p(zt | x1:t′) t′ > t
Likelihood Estimation p(x1:T )
Most Probable Latent Sequence argmaxz1:T p(z1:T | x1:T )

rely on sampling and assume that a linearisation of the functions up to first or
second order is sufficient. Additionally, they either demand emission and transition
matrices to be known upfront or require a tractable posterior to allow for learning
(Karl et al., 2017a). LSTMs on the other hand, allow for learning highly non-linear
transition functions and can model long-term dependencies between latent states.
The relationship between RNNs and state space models have been discussed as early
as in DeCruyenaere and Hafez (1992). Until recently, it mostly seemed like the two
approaches were opposing. In the following section, we will give an introduction to
recent architectures that defy this assumption.

2.3.2 Neural State Space Models
We concluded the last section by remarking that LG-SSMs and HMMs may be
unsuited to model complex processes in large data settings. However, LSTMs often
can accommodate such scenarios. Why would we want to combine recurrent neural
networks and state space models? As discussed at the end of Section 2.1, RNNs
are not well suited to modelling processes where stochasticity is inherent and
dominant. While we may interpret the output of an RNN as the parametrisation of
a probability distribution, the hidden state transitions in the RNN remain entirely
deterministic. Chung et al. (2015) note that the introduction of stochasticity helps
the LSTM to model “the kind of variability observed in highly structured sequential
data”. Adding to that, LSTMs are not well suited to the unconditional generation of
novel sequences. Principled approaches to generate novel sequences require a prior
distribution, from which to draw samples, which standard LSTMs lack. The above
statements are supported by the fact that the works introduced below routinely
outperform deterministic recurrent approaches or classical state space models.

Over the last years, a cornucopia of approaches marrying state space models and
recurrent neural networks have been proposed. This has lead to sequence models ca-
pable of dealing with non-linear, stochastic, and high-dimensional data such as audio
or video in a fully probabilistic way. The topic of this thesis is object-aware modelling
of physical video sequences. By specialising general-purpose sequence models to
be better suited to physical video modelling, e. g. by including object-based image
models and physical prediction modules, approaches such as ours, STOVE, may be
obtained. The non-linear sequence models presented below therefore correspond
to important baselines, but may also yield inspiration for further developments in
object-aware modelling of physical video sequences. Examples of such models that
we are aware of include Bayer and Osendorfer (2014), Fabius and van Amersfoort
(2015), Chung et al. (2015), Watter et al. (2015), Krishnan et al. (2015), Johnson
et al. (2016), Karl et al. (2017a), Krishnan et al. (2017), Maddison et al. (2017),
and Rangapuram et al. (2018). They enjoy the advantage of using neural networks
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to model highly non-linear functions, while simultaneously benefitting from the
stochasticity, structure, interpretability, data-efficiency, and the explicit inclusion of
structure in state space models (Rangapuram et al., 2018).

Such models can be obtained by modifying the emission and transition behaviour
of the LG-SSM in numerous ways. Regarding the emission function, it is common
to replace the linear model with (a) a complex non-linear likelihood model, e. g.
a neural network. Additionally, most approaches implement one of the following
tactics to allow for more flexible transition models: (b) model the latent transition
with a neural network, (c) keep the transition dynamics linear but predict their
parameters with a (recurrent) neural network, or (d) introduce a separate deter-
ministic RNN which interfaces with stochastic latent states. The approaches also
differ by how many of the strict independence assumptions of the LG-SSM they
retain. Many of the above approaches leverage amortised variational inference,
see Section 2.2, to achieve tractable learning in these highly non-linear hybrid ap-
proaches between state space models and neural networks. VI is usually applied for
models which implement strategies (a), (b), or (d), because the resulting non-linear
transition models make classical inference intractable. For future reference, STOVE,
our approach, falls into the categories (a) and (b), where (a) is achieved by using
Sum-Product Attend-Infer-Repeat (SuPAIR), Section 3.1.2, and (b) is realised with a
Graph Neural Network (GNN), Section 3.2.2. The above approaches may be framed
in terms of a variety of applications, such as time series prediction, modelling of
speech, handwriting, or videos. While this may have informed model design, any
approach is relevant for this section as long as it is a general approach capable of
modelling high-dimensional data with complex dependencies. Here, modelling refers
to the specification of a fully generative model as well as the capability to perform
inference therein.

A useful strategy for understanding neural state space models is to seek answers to
the following questions.

(i) How are images xt generated?
(ii) How are future latent states zt+1 predicted?

(iii) How are present latent state zt inferred?

Questions (i) and (ii) are directed at the form of the emission and transition distri-
butions, the generative model, Eq. (2.33) for the LG-SSM. As posterior inference
of latent variables zt is intractable in non-linear state space models, some form of
amortised approximation is usually employed, the exact form of which is asked by
question (iii).

Due to different ways of interlacing the RNNs and SSMs, the cited approaches
implement observation likelihoods, transition functions, or inference networks in
different ways. Note that the above approaches may have been designed with
different applications in mind. While one might focus on accurate inference of latent
states, e. g. by designing a neural smoother, another might focus on obtaining a good
generative model.

VRNNs. While all of the above approaches have reached some level of popularity
in the community, the Variational Recurrent Neural Network (VRNN) (Chung et al.,
2015) is most common. In our evaluation in Chapter 5, as well as in other papers
in the literature, it is the chosen representative of general-purpose non-linear and
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stochastic sequence models. Let us quickly introduce the defining characteristics
of the VRNN. The VRNN employs the strategies (a) and (d) mentioned above. It
introduces an LSTM whose hidden state ht = f1(ht−1,xt, zt) depends on both
the current observation xt, the current latent state zt, and the previous hidden
state ht. At time t, the LSTM therefore expresses dependencies on all previous
images x1:t−1 and latents z1:t−1 through its hidden state. This hidden state is used
as input to Multilayer Perceptrons (MLPs) to predict the means and variances of the
relevant Gaussian conditional distributions. In all subsequent approaches and unless
otherwise mentioned, distributions are likewise to be assumed factorised Gaussians,
whose means and variances are predicted by neural networks. To answer questions
(i) through (iii), let us assume that we have inferred, observed, or calculated all
previous variables zt−1, xt−1, and ht−1. To ease notation, we will also assume
that the VRNN and all subsequent approaches correctly handle prior distributions.
Figures 2.4a to 2.4d illustrate the following operations. (i) Following Fig. 2.4a,
to generate an image xt, we require the previous hidden state ht−1, available by
assumption, and current latent state zt, which is available from (ii) or (iii). This
gives us xt ∼ p(xt | x1:t−1, z1:t) = f2(ht−1, zt), where f2 and all following fi are
realised as MLPs. (ii) Still looking at Fig. 2.4a, we can sample future latent states as
zt ∼ p(zt | x1:t−1, z1:t−1) = f3(ht−1) from the previous hidden state of the RNN. (iii)
Following Fig. 2.4b, given the current observation xt and previous hidden state ht−1,
we may infer zt ∼ q(zt | xt,x1:t−1, z1:t−1) = f4(xt,ht−1) without any extra steps.
Here, q is the amortised variational approximation of the true posterior. Now that
we have obtained both xt and zt, we can update the hidden state and move on
to the next timestep, see Fig. 2.4c. As ht−1 can realise a dependence on all past
states and observations, the recognition model’s estimate of zt may be seen as a
neural and implicit version of the Kalman filtering algorithm. The deterministic
transition of hidden states is shared over inference and generation. The VRNN does
not implement a way to obtain smoothed estimates of zt. The above procedures and
Figs. 2.4a to 2.4d correspond to the generative and inference models

p(x1:T , z1:T ) =
∏
t

p(xt | x1:t−1, z1:t) p(zt | x1:t−1, z1:t−1) (2.36)

q(z1:T | x1:T ) =
∏
t

q(zt | x1:t, z1:t−1) , (2.37)

from which the ELBO may be assembled for parameter learning. In contrast to the
LG-SSM, the VRNN includes no conditional independence assumptions on previous
observations or latent states.7

STORN. The Stochastic Recurrent Network (STORN) (Bayer and Osendorfer, 2014)
is one of the first approaches combining SSMs and LSTMs. It is a predecessor to
VRNNs, also uses strategies (a) and (d), and its graphical model is given in Figs. 2.4e
to 2.4h. STORN’s approach of integrating RNNs and LSTMs is straightforward.
STORN includes two RNNs f1 and f2. They realise the time-factorisation of the
generating and recognition distributions, where the output of the RNN at time t

7While not immediately relevant to this thesis, I find it instructive to briefly discuss some other
approaches to neural state space models. Sadly, a comprehensive review and comparison of these
models does currently not exist. The only thing that comes close is Lesort et al. (2018), which has a
heavy focus on reinforcement learning/control and misses many of the works cited herein. The busy
reader may skip these last paragraphs. In addition to presenting interesting background knowledge,
their primary relevance is for the discussion of STOVE and future work in Section 6.1.
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Figure 2.4.: Graphical models for (a-d) Variational Recurrent Neural Networks (VRNNs),
(e-h) Stochastic Recurrent Networks (STORNs), and (i-l) Stochastic Recurrent
Neural Networks (SRNNs). The first column illustrates the generation of novel
observations and/or latents. Observed variables are shaded, latents transparent,
and deterministic variables are displayed as diamonds. Inference operations
are drawn with red arrows. Deterministic nodes refer to hidden states of RNNs,
which model dependencies on all of their previous input variables. Emission and
transition distribution of stochastic nodes are realised by MLPs. In the original
papers, the dependence on external control variables is sometimes considered,
which is omitted here. Figures (a-c) adapted from Chung et al. (2015).
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directly gives the current conditional distribution

p(x1:T | z1:T ) =
∏
t

p(xt | x1:t−1, z1:t) p(xt | x1:t−1, z1:t) = f1(zt,xt−1,h
1
t−1)

(2.38)

q(z1:T | x1:T ) =
∏
t

q(zt | x1:t) q(zt | x1:t2) = f2(xt,h
2
t−1) . (2.39)

Similar to the procedure for the VRNN, one may check how the questions (i-iii) are
answered for STORN. (i) xt is generated from Eq. (2.38), requiring the previous
images and current latent state, and (iii) zt is inferred from Eq. (2.39), requiring
only the current observation to update the hidden state. Unlike the VRNN, STORN
infers latent state zt independent of all previous latent states. (ii) A major drawback
of STORN is, that it provides no way to predict future latent states zt. The updated
latent zt would also be needed to update h1

t to generate a new observation xt. In the
absence of such a mechanism, we sample z ∼ p(z) from the prior at each step of the
prediction, which leads to lower quality predictions, as the amount of stochasticity
is fixed and is independent of all previous states and observations (Chung et al.,
2015).

DMMs. To generate an observation xt, the generative model of the VRNN, Eq. (2.36),
depends on both the stochastic variable zt as well as the history ht−1, encompassing
all previous observations x1:t−1 and latents z1:t−1. Likewise, the generation of novel
latent states zt depends on all x1:t−1 and z1:t−1 through the hidden state ht−1. This
breaks with Markovian assumptions of the LG-SSM, which the authors of the Deep
Markov Model (DMM) (Krishnan et al., 2017) retain.8 DMMs employ strategies (a)
and (b), and their generative model is identical in factorisation to the LG-SSM,

p(x1:T , z1:T ) =
∏
t

p(xt | zt) p(zt | zt−1) , (2.40)

where the emission distribution is parametrised by an MLP and the transition
distribution is inspired by the Gated Recurrent Unit. Notably, they formulate the
inference network as

q(z1:T | x1:T ) =
∏
t

q(zt | zt−1,x1:T ) , (2.41)

using all previous and future observations to infer the latent states. This is unlike
VRNNs and STORNs, which make the simplifying assumption that zt is inferred
using only past information.9 Unlike the VRNN, the DMM relies on all observa-
tions, including future observations xt+1:T , to infer zt. Both formulations are valid,
however, without any further additions, this smoothing-like formulation requires

8DMMs were previously published as Deep Kalman Filters (DKFs) by Krishnan et al. (2015). A
less fitting name, especially given that the Deep Kalman Filter performs smoothing in its default
configuration.

9In addition to (zt−1, x1:T ), the authors also consider other dependencies of the inference network
on the observations, such as conditioning on (x1:T ), (x1:t), (zt−1, x1:T ), (zt−1, x1:t), or (zt−1, xt:T ).
From the perspective of a Markovian state space model, the previous latent state and all future
observations should lead to optimal smoothing inference given the independence assumptions. Indeed,
they show that the inclusion of past observations is negligible if the last latent state is included. If it is
not included, then past observations contribute significantly to the overall performance. Conditioning
on all observations is performed using a bi-directional RNN, see e. g. (Salehinejad et al., 2017).
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the entire sequence to be available at inference time and complicates the reuse of
transition functions as in the VRNN, which shares its LSTM between inference and
generation. The authors show strong performance of the DMM inference model
compared to STORN and others, but show no comparisons for the generative model.
One may assume that their generative performance will deteriorate if the assumed
independencies no longer hold. However, the simplified generative model Eq. (2.40)
does lead to tractable evaluation of the KL divergence in the ELBO.

SRNNs. Fraccaro et al. (2016) provide yet another variant of stochastic recurrent
networks with strategies (a) and (d), which more clearly separates stochastic from
deterministic nodes, i. e. separately models transitions for deterministic and stochas-
tic nodes. All distributions are then predicted by MLPs with dependence on both
the stochastic as well as the deterministic nodes. They have found this to give
better performance and to be easier to train. They name their approach Stochastic
Recurrent Neural Network, which should not be confused with Stochastic Recurrent
Networks (STORNs), but mercifully choose the more distinct abbreviation SRNN.
Like Krishnan et al. (2017), they use information from future observations during
inference. We have displayed them in Figs. 2.4i to 2.4l alongside the others for
comparison, but will not go into any more detail.

DVBF. Indeed, the reuse of the generative transition in the inference model, as in
VRNNs, is paramount according to the authors of Deep Variational Bayes (DVBF)
(Karl et al., 2017a), who claim that it leads to favourable gradients during training
and therefore improves performance. Like the DMM, they keep the independence
assumptions Eqs. (2.40) and (2.41) of the generative model. Additionally, Karl
et al. (2017a) claim that many sequence models are stuck in local optima of good
reconstruction but bad transition behaviour because optimal reconstructions may
be obtained without incorporating knowledge about the transition. This biases
the latents towards reconstruction and not transition. The transition function then
cannot modify the latents because this would decrease the reconstruction quality,
leading to a model biased towards reconstruction. To instead bias the model towards
useful transition functions, they posit a special form of the transition function and
inference network. Instead of directly inferring latent states, the inference network
infers parameters of the transition function, making it deterministic, from the
previous latent state and current observation. A Bayesian treatment of the inferred
parameters makes it possible to penalise the heavy use of the current observation
to predict the parameters of the current latent state, ensuring that the transition
function is used as intended. Karl et al. (2017a) observe that their model can recover
derivative quantities, such as velocities, in the latent space, while Krishnan et al.
(2017) fail to do so. As our model, STOVE, also reuses the generative transition
model during inference and strictly enforces latent space assumptions, we will
discuss the effect of these assumptions further in Chapter 4.

Quasi-Linear Approaches. Other recent approaches using strategies (c), such as
Fraccaro et al. (2017) and Rangapuram et al. (2018), are of special interest because
they retain the ability to tractably compute all quantities in Table 2.1. Fraccaro
et al. (2017) achieve this by predicting time-dependent parameters γ1:T of a LG-
SSM using (recurrent) neural networks. As the equations of Table 2.1 also apply
to non-stationary processes, once the linear transition and emission parameters
have been inferred, this model is identical to a time-dependent LG-SSM. Here,
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Figure 2.5.: Graphical model of the Kalman Variational Autoencoder (KVAE). The determin-
istic LSTM predicts the parameters γ1:T of a Linear Gaussian State-Space Model
(LG-SSM). Given these parameters, the resulting model is a LG-SSM in the
latents z1:T and pseudo-observations a1:T . This allows for tractable calculation
of all tasks in Table 2.1. To allow the KVAE to model visually complex observa-
tions xt, the pseudo observations at are used as latents to a time-independent
VAE, at → xt. Observed nodes are shaded, deterministic nodes diamonds, and
the inference network is shown as red arrows.

Fraccaro et al. (2017) rephrase the linear observation model of the LG-SSM as
pseudo-observations at. These serve as input to a time-independent VAE, which
can then model complex and high-dimensional distributions, such as images. The
parameters γt, which model the transition of zt−1 to zt and emission of at from zt, are
predicted from the previous pseudo observations a1:t−1. Other approaches, such as
Watter et al. (2015) and Karl et al. (2017a), also infer locally linear transitions γ1:T .
However, due to the direct dependence of γ1:T on the latent states z, they lose
the linear dependence of consecutive latent states and cannot employ the exact
algorithms (Fraccaro et al., 2017). See Fig. 2.5 for an illustration of their architecture.
This approach presents an elegant and disentangled combination of VAEs and LG-
SSMs. In contrast to VRNN and STORN, their model does not necessitate the
expensive generation of high-dimensional images to generate a sequence of latent
states. It can instead restrict itself to lower-dimensional pseudo observations at.
A drawback of this approach is that, to make the prediction of γt tractable, it
parametrises them as a mixture of fixed, learned global parameters. Therefore, at
each timestep, the LSTM can only predict a mixture of linear actions, which limits
the non-linearity this design can achieve. Nevertheless, such approaches provide
promising avenues of future work for STOVE, see Section 6.1.

2.4 Sum-Product Networks
Sum-Product Networks (SPNs) are a deep probabilistic graphical model introduced
to the world by Poon and Domingos (2011). One may view them as a hierarchical
generalisation of mixture models. As such, they inherit the property of universal
approximation from mixture models (Peharz et al., 2019). SPNs are an instance of

24 Chapter 2 Concepts



tractable probabilistic models. In contrast to most other graphical models, they allow
for tractable and exact evaluation of many relevant inference tasks. All tractable
graphical models have a SPN-representation (Poon and Domingos, 2011), and every
SPN may be converted into a Bayesian Network in linear time (Zhao et al., 2015).
They have successfully been employed to on complex tasks, such as modelling
images (Poon and Domingos, 2011; Dennis and Ventura, 2012), speech (Peharz
et al., 2014), or language (Cheng et al., 2014), and classification e. g. of images
(Gens and Domingos, 2012), often producing state-of-the-art results at the time of
publication. SPNs are relevant to this thesis because STOVE employs a variant of
Sum-Product Attend-Infer-Repeat (SuPAIR) to model the distribution over individual
images. SuPAIR uses Random Sum-Product Networks (Random SPNs) (Peharz et al.,
2019) to achieve this. Random SPNs are a variant of SPNs fully amendable to end-
to-end differentiable optimisation. Historically, SPNs are an instance of Arithmetic
Circuits (Darwiche, 2003), for which parameters are traditionally specified and not
learned. The interested reader is referred to Vergari et al. (2019) for a recent and
extensive review of SPNs.

A Sum-Product Network (SPN) may be represented by a rooted directed acyclic
graph, containing sum nodes, product nodes, and leaf distributions. The scope of
an SPN is given by the set of variables over which it is defined. Following this, a
recursive definition of SPNs is given:

“(1) A tractable distribution is an SPN; (2) a product of SPNs defined
over different scopes is an SPN; and (3), a convex combination of SPNs
over the same scope is an SPN.” (Molina et al. (2018))

While this definition should technically suffice, we will illustrate SPNs and their prop-
erties a bit further. At the root, the joint probability p(x) over all x = (x1, . . . , xD) ∈ X
is obtained. Each leaf defines a distribution over a subset of the input variables.
Any other node in the tree is either a sum node or a product node. Sum nodes
propagate (upwards) a weighted sum over their children, which all have identical
scope. In other words, each sum node is a mixture model over its children. The
mixture weights are learned during training, and Peharz et al. (2015) show that
they may be normalised locally for each sum node without losing expressiveness.
Product nodes compute the product over inputs from different, non-overlapping
scopes. This allows the SPN to implement hierarchies over variables by modelling
independencies between them. As we traverse the tree of a typical SPN, going down
from the full joint distribution at the root, product nodes are used to iteratively split
the joint distribution into less complex distributions over fewer variables. Intuitively,
we want to use product nodes whenever we can find disjoint subsets of statistically
independent variables at the current node. If we cannot find such independencies,
we use sum nodes to model more complex distributions. These may then, in turn,
induce further independencies. Usually, sum and product nodes are employed in
an alternating pattern. Evaluation of an SPN is performed bottom-up, i. e. given
an input x, we evaluate all leaf distributions at the corresponding subvectors of x
and then pass up the results, performing weighted summation over the children at
sum nodes and multiplication of children at product nodes. Figure 2.6 shows an
illustration of a simple SPN, where each leaf node defines a distribution over a single
variable only. Note that for SPNs, the graph structure may be seen as a deterministic
computation graph of summation and multiplication operations from the leaves
to the root. In contrast, in graphical depictions of other models, such as Bayesian
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Figure 2.6.: Illustration of a simple SPN. Sum nodes implement normalised mixtures over
their child distributions and product nodes model independencies. The joint
probability over all variables p(x) is obtained at the root by evaluating the leaf
node distributions and propagating the results up through sum and product
nodes. In this illustration, the leaves contain the univariate distributions of the
variables x = (x0, x1, x2). Figure adapted from Molina et al. (2019).

Networks, graph nodes usually directly illustrate random variables. In an SPN, this
is only true for the leaf nodes. See the original publication (Poon and Domingos,
2011) for further information, as well as an airtight theoretical introduction of SPNs.

An attractive property of SPNs is that they are capable of performing many inference
tasks in linear time with respect to the size of the model. Computation of marginals
p(x−y) =

∫
p(x)dy simply corresponds to marginalisation at the respective leaf

nodes, where y ∈ Y ⊂ X , x−y ∈ X−y ⊂ X , and Y ∪X−y = X , Y ∩X−y = ∅.10 Each
leaf node is defined over a subvector y′ of x. If all y′ ∈ Y ′ are in the marginalisation
set for a specific leaf node Y ′ ⊂ Y, then marginalisation simply corresponds to
setting this node to 1. Similarly, any conditional p(y | x−y) may be constructed
via marginalisation p(y,x−y)/p(x−y) and is therefore obtained in linear time. A
linear-time approximation exists for MPE-inference y∗ = argmaxy p(X−y = x−y,y),
for which exact computation is NP-hard. Vergari et al. (2018) demonstrate that SPNs
have built-in autoencoding and unsupervised representation learning capabilities.

If the structure of an SPN is given, e. g. because it is designed with prior knowledge of
the data or specific applications in mind, the weights of an SPN may be learned using
expectation maximisation or gradient-based approaches (Poon and Domingos, 2011).
However, often, the tree structure of an SPN is learned from data using specialised
algorithms such as in Gens and Pedro (2013), Poon and Domingos (2011), Dennis
and Ventura (2012), or Adel et al. (2015). To obtain a valid SPN, the algorithms
need to ensure that the structure obeys the completeness (i. e. for each sum node, all
children have identical scope) and decomposability (i. e. for each product node, all
children have non-overlapping scope) properties, see Poon and Domingos (2011)
and Peharz et al. (2015) for further details.

10Set operations are meant as operations on the dimensionality of the input vectors, i. e. the ∪
operator corresponds to concatenation.
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Figure 2.7.: Illustration of a Random Sum-Product Network (Random SPN) over seven
variables (X1, . . . , X7) with hyperparameters D = 2, R = 2, C = 3, S = 2, and
I = 2. Here, D is the number of times the scope is partitioned (downwards in
the tree), R the number of times we repeat partitioning from full scope, C the
number of sum nodes at the root, S the number of sum nodes at intermediate
levels, and I the number of leaf distributions. Figure from Peharz et al. (2019),
where further details may be found.

Random SPNs. Peharz et al. (2019) argue that the need for structure learning
may have hindered widespread adoption of SPNs, as their learning algorithms are
incompatible with the prevalent notion of general-purpose architectures and learn-
ing using Stochastic Gradient Descent (SGD). They propose Random Sum-Product
Networks (Random SPNs), which forego structure learning entirely. Instead, a
large set of random structures is generated, which essentially represent an over-
parametrisation of the problem, similar in spirit to deep neural networks. After
random initialisation, Random SPNs are fully end-to-end trainable using SGD. Such
simple-to-use deep probabilistic architectures are desirable because they retain the
capabilities of SPNs – exact likelihood evaluation, efficient computation of arbitrary
conditioning or marginalisation queries, and a principled treatment of uncertainties
and missing data – while eliminating the need for structure learning. In addition,
Random SPNs, also called Random Tensorised SPNs (RATs), integrate naturally into
popular deep learning frameworks and are easily combinable with other end-to-
end differentiably trainable architectures such as neural networks. Peharz et al.
(2019) demonstrate that Random SPNs are capable of modelling complex distri-
butions, allow for a continuous trade-off between discriminative and generative
learning, maintain well-calibrated predictive uncertainties, and can be used in hybrid
neural-SPN architectures.

We will briefly discuss the construction of a Random SPN and direct the interested
reader to the original publication by Peharz et al. (2019) for further details. Random
SPNs abandon structure learning in favour of a randomly created graph structure, the
region graph. The creation of the region graph can be defined succinctly recursively,
see Peharz et al. (2019, Algorithm 2). The overarching idea is that, starting at the
root, the full scope X is randomly divided into two disjunct and equally-sized regions
X1 and X2, such that X1 ∪ X2 = X and X1 ∩ X2 = ∅, a 2-partition. These are then
further and randomly subdivided down the tree, where a hyperparameter D governs
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how often this splitting procedure is recursively repeated. The whole procedure itself
(partitioning from full scope) is also repeated a specified number of times R. Given
these regions, a Random SPN may then be created. A region will either be a sum
region or a leaf region, where each sum region will be equipped with S sum nodes
and each leaf region with I leaf nodes. For class-conditional distribution modelling
p(X | C), C different roots may be used in parallel. Between two sum regions (or
a leaf and a sum region), product regions are created which realise all possible
products between the sum nodes of their child regions (the outer product of the child
regions). Figure 2.7 shows an example of a Random SPN. Instead of learning the
correct partitioning of variables from data, the Random SPN contains many different
deep hierarchical mixtures over the variables. If sufficiently large random structures
are generated, SGD-training automatically reinforces useful substructures, such that
Random SPNs can successfully model complex data.
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3Related Work

While the previous chapter has introduced general concepts, relevant to the ma-
chine learning community at large, this chapter focuses on related work in more
specific subfields. Our approach, STOVE, mainly combines two related topics: image
modelling and physics prediction. The combination of these necessarily yields a
model capable of reasoning over sequences, i. e. videos. While we have presented
general-purpose sequence models in Sections 2.1 and 2.3, this chapter will also
devote a section to models catered to sequence prediction, albeit with a focus on
videos, object-awareness, or physics. Each of the three sections below will first give
a high-level overview of related works. Then, some approaches will be presented
in-depth as they provide direct inspiration for STOVE, are used as components in
STOVE, or are compared to as baselines. Specifically, STOVE uses Sum-Product
Attend-Infer-Repeat (SuPAIR), Section 3.1.2, as its vision model and a Graph Neu-
ral Network (GNN), Section 3.2.2, as its physics model. Lastly, each section then
contains a few words on tangential but nevertheless related developments in the
respective fields.

3.1 Object-Aware Image Modelling
3.1.1 Motivation and Overview
Teaching machines to see as humans do is the ultimate goal of computer vision.
Ideally, this entails learning a model which can adapt to and solve a wide variety
of tasks in real-world visual environments with little supervision using a complex
mental representation of the world. In practice, however, this ambitious goal is often
broken down into a variety of narrow tasks, which necessitate the expensive curation
of labelled training data for supervised learning. Most popular is image classification,
where each image is an instance of a class to be determined by the model, see e. g.
Rawat and Wang (2017). Also prevalent are segmentation task, where each pixel
belongs to a class in the image, see e. g. Ronneberger et al. (2015). Then, there
are hybrid tasks between computer vision and natural language processing, such as
image captioning, wherein the model describes the contents of a given image with a
short sentence. Other tasks of computer vision, such as object tracking (e. g. Redmon
et al. (2016)) or motion estimation (e. g. Dosovitskiy et al. (2015)), are related to
videos rather than singular images.

Classically, hand-designed approaches, such as designing specific filter kernels to
detect edges, were used to engineer solutions to some of the above tasks. However,
currently, many state-of-the-art models in computer vision rely on some form of
machine learning. Of those, many use (deep) convolutional neural networks (CNNs).
This applies to all examples cited above. CNNs specifically have been an instrumental
component in achieving state-of-the-art performance over the last decade, where
the publication of Krizhevsky et al. (2012) marks a starting point. Only recently
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have purely self-attention-based architectures begun to take off in computer vision
(Ramachandran et al., 2019), challenging the prevalent dominance of convolutional
architectures.

Because the collection of supervised data for the models above is expensive and time-
consuming, the computer vision community has put approaches forward to alleviate
this problem, such as data augmentation, weak supervision, semi-supervision, or
training on surrogate tasks. However, generally speaking, the problem remains
unsolved. A promising avenue of research is that of image (and video) modelling.

Image Models. An image model aims to learn a probabilistic model of the likelihood
distribution p(x) of images x in unsupervised fashion from a data set (x1, . . . ,xN ).
Ideally, such a model then allows for both sampling of novel images x ∼ p(x) and
exact evaluation of the likelihood p(x). Additionally, the model might extract a
latent representation z ∼ p(z | x), or a variational approximation thereto, which
may be useful for reasoning in downstream tasks. At first inspection, image models
seem unrelated to the tasks of computer vision mentioned above. However, as we
shall soon see, depending on their specification, they may directly or indirectly help
solve tasks entirely without supervisory signals. In fact, generative modelling-based
approaches to computer vision have a longstanding history in the community and
are known as vision as inverse graphics (Grenander, 1976). Such approaches require
the formulation of an image generating process, such as a renderer, and vision
then corresponds to parameter inference in the renderer. Classically, this renderer
is non-differentiable, and parameter inference is attempted using sampling–based
approaches. We will not discuss such models here. Instead, we focus on models
that learn the data-generating process. Generally, image models are trained in an
unsupervised fashion, although learning may be conditioned on supervisory signals
if desired.

Before we focus on object-centric approaches to image modelling, we briefly discuss
the use of general-purpose probabilistic models for image modelling. Variational
Autoencoders (VAEs) are a popular example of deep generative models, which may
be used for image modelling, and have been introduced in detail in Section 2.2.
They allow for the generation of novel images in a two-step process: First, a latent
sample z is drawn from the prior z ∼ p(z), after which an image x is generated from
the conditional likelihood x ∼ p(x | z). VAEs do not allow for direct evaluation of the
likelihood p(x), although sampling-based approximations exist (Kingma and Welling,
2014). However, a latent representation z ∼ q(z | x) may be obtained. Generative
Adversarial Networks (GANs) allow for the generation of highly realistic samples
but lack an explicit likelihood as well as posterior inference (Goodfellow, 2016).
Autoregressive approaches, such as Van den Oord et al. (2016), omit the latent space
but allow for tractable likelihood evaluation. We employ a Random Sum-Product
Network (Random SPN), which allows for tractable density estimation, sampling,
and encoding, but is, in essence, a linear architecture, see Section 2.4. Recently,
flow-based approaches, see Rezende and Mohamed (2015), Kobyzev et al. (2019),
or Papamakarios (2019), have shown promise. They use a series of non-linear
invertible transformations to yield neural density estimators that allow for sampling,
tractable likelihood evaluation, and inference of latent states. However, depending
on the flow architecture, either sampling is slow and likelihood evaluation is fast,
sampling is fast and likelihood evaluation is slow, or both are fast but at the cost of
decreased modelling flexibility (Papamakarios, 2019). That being said, most image
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models relevant to this thesis are VAE-based architectures. Although there are no
obvious obstacles for using flows or other approaches for image modelling, we are
not aware of many works that do so. One may specualte that this is due to the
wealth of work dealing with interpretable or disentangled latent spaces in VAEs, see
Section 2.2, compared to only very few works that discuss this in the context of
flows, see Sorrenson et al. (2020) for a rare example.

Attend-Infer-Repeat. As motivated in Chapter 1, the notion of objects is an elemen-
tary building block to human cognition (Lake et al., 2017). This strong human prior
of object-oriented vision motivated Eslami et al. (2016) to introduce the Attend-Infer-
Repeat (AIR) model. Unlike the previously discussed unstructured generative models,
AIR has a baked-in notion of objects. This object-centrality is achieved using a special
architecture, entirely unlike the predominant approaches to supervised scene seg-
mentation (Burgess et al., 2019). We employ a variant of the AIR-successor SuPAIR
(Stelzner et al., 2019), which we introduce in full detail below in Section 3.1.2, in
our approach to object-aware video modelling. In addition to SuPAIR, many other
variants of AIR have since been introduced, some of which are mentioned in Sec-
tion 3.1.3. Before that, we would like to give a brief and non-technical introduction
to the idea behind the AIR image models.

For AIR, an image is modelled as a superposition of objects. An LSTM, see Section 2.1,
the attention network, is given the image as input and iteratively attends to each
of the objects, inferring their positions and sizes. These are used as input to spatial
transformer layers (Jaderberg et al., 2015), which obtain rectangular, differentiable
cutouts at the proposed object locations. A VAE is then used to model the appearances
of these cutouts individually. To obtain image reconstructions, first, reconstructions
of the object cutouts are obtained from the object VAE and then pasted one by one
to the correct position at the correct scale on the, initially empty, image canvas using
the inverse transformation for the spatial transformer. Therefore, AIR is also referred
to as a cut-and-paste image model (Stelzner et al., 2019).

The original AIR has some fairly restricting assumptions: Rectangular bounding
boxes are assumed, the total number of objects is assumed small, and the background
is assumed to be black. Additionally, AIR is only demonstrated to work on visually
simple data. However, it is in many ways closer to the elementary goal of computer
vision than the supervised, task-specific approaches discussed above. Instead of
training on a specially curated data set for a narrow task, AIR obtains a general-
purpose, object-oriented representation of a given scene. This representations may
be used directly for object localisation, (rudimentary) image segmentation, or object
counting, and is easily adaptable to other downstream tasks. Scaling AIR-like
approaches to more natural scenes of higher visual complexity may provide solutions
to key problems in computer vision. Motivated by this, there is a large interest from
the robotics and reinforcement learning community, where the creation of manually
labelled datasets is often infeasible.

3.1.2 Sum-Product Attend-Infer-Repeat
With Sum-Product Attend-Infer-Repeat (SuPAIR), Stelzner et al. (2019) suggest
a variation to the original AIR architecture: Instead of using a VAE to model the
appearance over the objects, SuPAIR employs a Random Sum-Product Network
(Random SPN), see Section 2.4, to model the object distributions directly. We will
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now thoroughly introduce SuPAIR, relying heavily on the formalism and motivation
of Section 2.2, and then discuss improvements over the original AIR. Although the
original formulations of AIR and SuPAIR can handle varying numbers of objects, in
this work, a fixed and given object count will be assumed throughout for simplicity.
SuPAIR with fixed object count is used as the vision component in STOVE, as
presented in Chapter 4.

Like AIR, SuPAIR is framed as a Bayesian scene model: A data generating process
p(x, z) = p(x | z)p(z) is assumed, where x is an image and z are latent vari-
ables. Maximum likelihood learning of p(x) =

∫
p(x, z)dz and posterior inference

p(z | x) = p(x, z)/p(x) are intractable, and the recognition network q(z | x) is intro-
duced as the amortised variational approximation to the true posterior. Learning
is performed jointly in the generative process and the recognition distribution by
maximising the ELBO, Eq. (2.10), as a lower bound to the true image likelihood. So
far, this is identical to the VAE. The specification of the generative and recognition
distributions will now give the formalism by which the notion of objects is included
in the model. SuPAIR is illustrated in Fig. 3.1a.

The recognition network q(z | x) infers a distribution over the per-object latent states
(z1, . . . , zO) = {zo}Oo=1 = z1:O. Each object is characterised by a two-dimensional
position and size parameters for the horizontal and vertical scale of the object
zo = (zopos, z

o
size) = (zox-pos, z

o
y-pos, z

o
x-size, z

o
y-size). The size parameters give the scale of

the object’s bounding box with respect to the size of the canvas, i. e. 0 ≤ zox/y-size ≤ 1.
The posterior approximation q(z | x) is given by a factorised Gaussian

q(z | x) = N (z;µ(x),σ2(x)) , (3.1)

whose means and variances are predicted by the attention network, an LSTM. It is
given the image x as constant input and outputs the parameters (µ(x)o,σ2(x)o) for
the latent state zo distribution at each iteration o = (1, . . . , O).

Let us now turn towards the specification of the generative distribution p(x | z)p(z).
The prior

p(z) =
O∏

o=1

p(zopos) p(z
o
size) (3.2)

is assumed to be a simple uniform distribution over the object positions and sizes.
The conditional likelihood p(x | z) also factorises over objects as

p(x | z) = pbg-SPN(xbg | z1:O)

O∏
o=1

pobj-SPN(ST(x; zo, A) | z1:o)z
o
x-sizez

o
y-size . (3.3)

This equation warrants a longer explanation. The conditional likelihood of an im-
age x is given by the product of the background likelihood and the individual object
likelihoods. The likelihood of an object is modelled directly using the obj-SPN, a Ran-
dom Sum-Product Network (Random SPN), see Section 2.4. Likewise, the likelihood
of the background is modelled using the bg-SPN. Object sizes may vary between
objects and images, but the obj-SPN expects a fixed number of input variables, or
equivalently, a fixed object pixel resolution. Therefore, for each object o, a spatial
transformer layer ST(x; zo, A) extracts the contents of x at zopos via a rectangular
bounding box with size zosize and scales them to fixed quadratic resolution (A,A).
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Figure 3.1.: (a) Overview of the Sum-Product Attend-Infer-Repeat (SuPAIR) architecture
for image modelling. An attention LSTM attends to one object after the other,
inferring their latent positions and sizes z ∼ q(z | x). A spatial transformer
layer (ST) extracts rectangular object patches from the image x. The object
and background SPNs directly assign patch likelihoods from which we assem-
ble p(x | z). Generative and inference model are trained jointly by maximising
the ELBO. (b) Example images from AIR, SuPAIR, and MONet. Unlike AIR,
SuPAIR can handle structured backgrounds and accommodate noisy inputs.
The spatial mixture model formulation of MONet allows for modelling of more
complex scenes, although MONet relies heavily on colour cues. Images for (b)
reassembled from Eslami et al. (2016), Stelzner et al. (2019), and Burgess et al.
(2019).

The object likelihoods may then be directly evaluated using the obj-SPN. In Eq. (3.3),
they need to be rescaled by an exponent of zox-sizez

o
y-size in order to account for the

transformation. As we expect the overall image sizes to be constant throughout the
data, no such rescaling is needed for the evaluation of the background likelihood in
Eq. (3.3). The evaluation of any object likelihood component is always conditioned
on all previous latent variables. This becomes necessary when the bounding boxes
of different objects overlap. If this is the case, we must avoid modelling the same
pixels twice, once for object o1 and again for o2 > o1. Therefore, pixels that have
been modelled in o1 need to be marginalised over when evaluating the likelihood
pobj-SPN(ST(x; zo2 , A) | zo1:o2), implementing explaining away. This marginalisation
is trivial to achieve in random SPNs, see Section 2.4. Essentially, if we evaluate
an object o2 > 1, we need to check if any of the pixels of its bounding box in x,
parametrised by zo2 , have been part previous of bounding boxes oi < o2, and if this
is the case, we must marginalise over these pixels when evaluating the conditional
likelihood. Here, we let the order of the objects as discovered by the attention LSTM
induce a natural ordering. For the background, we must marginalise over all pixels
which are part of object bounding boxes, to ensure that the bg-SPN does in fact model
background pixels only. In Stelzner et al. (2019), the generative model, Eq. (3.3), is
written down using a formulation relying on mask and indicator matrices, so that
they can explicitly handle the marginalisation information that we have dealt only
informally with here. Otherwise, their presentation of the algorithm is identical.

The parameters of the inference network, i. e. the parameters of the LSTM atten-
tion network, and the generative network, i. e. the weights and leaf distribution
parameters of the object and background random SPNs, are optimised jointly us-
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ing mini-batch gradient descent on the standard ELBO, Eq. (2.10). Single sam-
ples z ∼ q(z | x) and the reparametrisation trick are used to approximate the
gradient of the expectation, as presented in Section 2.2.

While SuPAIR uses amortised variational inference to obtain the position and size
parameters of the objects, unlike AIR, it does not use a variational autoencoder to
model the appearances over the objects. In the original AIR, an encoder network
extracts a latent description zowhat from the object glimpse, from which a decoder then
generates a reconstruction. Much of the model complexity of AIR lies in this encoding-
decoding detour to obtain the loss on the generative model p(x | z) (Stelzner et al.,
2019). By explicitly modelling the distribution over the objects, SuPAIR is able to
assign conditional likelihoods directly, without resorting to expensive reconstructions.
The authors find that this improves the speed of learning in SuPAIR by an order of
magnitude in comparison to AIR. AIR assumes the background to be black, while
SuPAIR explicitly models the distribution over the background. Therefore, with
SuPAIR, one obtains a fully probabilistic model over the conditional likelihoods.
Stelzner et al. (2019) demonstrate that this leads to more robust performance in
scenarios with non-uniform backgrounds or observation noise. Note that, while
SuPAIR does not need a per-object latent encoding, if desired, such an encoding can
still be obtained directly using the autoencoding procedure specified in Vergari et al.
(2018). Figure 3.1b showcases applications of AIR and SuPAIR.

3.1.3 Tangential Developments
We will briefly touch on some historical and recent developments related to AIR and
SuPAIR, some of which may inspire future work.

Preceding AIR, models such as RAM (Mnih et al., 2014) and DRAM (Gregor et al.,
2015) have used attention-based mechanisms for modelling images as a sequential
drawing process. In each drawing step, the attention model selects a region of the
image canvas upon which the model then draws. Unlike in AIR, these steps are not
supposed to correspond to objects but rather separate strokes of a pen, mimicking
the human drawing process.

Succeeding AIR, a variety of approaches have been proposed that aim to overcome
its limitations. Crawford and Pineau (2019) target AIR’s inability to accommodate
scenes with large and varying amounts of objects by replacing the recurrent attention
mechanism with a convolutional architecture. MONet (Burgess et al., 2019) relaxes
AIR’s assumption of rectangular bounding boxes. Instead of predicting bounding box
parameters, MONet postulates each image as a pixel-wise mixture of components.
For this, MONet uses a U-Net-like (Ronneberger et al., 2015) architecture to predict
pixel-wise masks for each object iteratively and in an unsupervised fashion. The
image components, or objects, are then modelled with a component-VAE at full
resolution, where the masks are used to block out unrelated pixels for the current
component. While the number of components C, also called slots, is fixed for MONet,
the approach is able to handle a variable number of objects C ′ ≤ C by ignoring
the superfluous slots using the masking mechanism. In addition to modelling more
complex sceneries, this allows MONet to accommodate partially occluded objects,
see Fig. 3.1b. MONet is shown to generalise to unseen numbers of objects as well
as novel feature combinations and object co-occurences (Burgess et al., 2019). The
extracted latent scene representation corresponds to interpretable quantities such
as object shape, position, scale, or colour. However, MONet’s attention mechanism
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is deterministic, and it lacks a proper probabilistic treatment. Specifically, there
is no principled way to allow for unconditional generation of scenes because the
component latent states are assumed to be independent. Two approaches that
remedy this are GENESIS (Engelcke et al., 2020) and IODINE (Greff et al., 2019).
With IODINE, Greff et al. (2019) introduce an iterative inference scheme. At each
step, component latents are inferred jointly over all objects. However, the iterative
procedure allows for interactions between the latents and, therefore, unconditional
scene generation. GENESIS takes a different route and introduces dependencies
between the object-wise latents through an autoregressive formulation using a
RNN. Most recently, SPACE (Lin et al., 2020) has proposed a combination of spatial
attention and scene mixture model, attempting to solve scaling issues in MONet and
its derivatives, similar to how Crawford and Pineau (2019) did for AIR.

3.2 Physics Modelling

3.2.1 Motivation and Overview
As with the previous section, we will now give a brief introduction to physics
modelling in the machine learning community. Sometimes the lines between a physics
model and video model become blurry because both may be able to predict future
observations. For us, physics models are those (a) whose main motivation comes
from modelling physics, (b) explicitly use a physics engine, or (c) rely on strong
supervisory signals such as object positions and properties, or the pre-specification
of the governing types of physics (e. g. gravity or collisions).

Humans are capable of robustly and precisely predicting the result of intricate
physical processes, such as objects falling under gravity, colliding with walls or
other objects, or rolling down slopes. We can do this with incredible flexibility for a
variety of scenarios and objects. This facet of human ability is not only relevant for
children playing with toy bricks. Instead, it seems to be a core component of human
intelligence, relevant for a variety of every-day tasks. It is called intuitive physics. For
a long time, the predominant explanation of this phenomenon has been that humans
rely on a broad set of heuristics (McCloskey, 1983). However, recent developments
in the cognitive and psychological sciences suggest that a better explanation is given
by assuming that we possess some variant of a mental Newtonian physics simulator
(Hamrick et al., 2011; Sanborn et al., 2013; Battaglia et al., 2013). To predict future
trajectories, we perform probabilistic inference in this mental physics engine given
our noisy sensory observations.

Simulator-Based Approaches. Early approaches in physics modelling, such as Galileo
(Wu et al., 2015), were heavily driven by such cognitive motivations, designing
machine learning models to mimic this newfound explanation of intuitive physics.
Galileo proposes a model which can infer the parameters of a single object – such as
mass, position, or shape – from observations of real videos of physics experiments.
While certainly impressive, early approaches, such as Galileo, often contain a lot
of hand-designed structure and supervision: A standard tracking algorithm is used
to infer the object trajectories, e. g. of an object rolling down a slope. A physics
simulation software is initialised with the type and geometry of the experiment, such
that it matches the observed experiment exactly. The parameters of the simulation
correspond to the object properties, we wish to infer. Then, Markov Chain Monte
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Carlo (MCMC) is used to find the parameters of the simulator which result in simula-
tions that best fit the observations. Once a good fit is obtained, the parameters may
be compared to ground truth or the simulator is used to predict future trajectories.

Robotics. In Fragkiadaki et al. (2016) and later Agrawal et al. (2016), the cognitive
roots are overshadowed and replaced by hopes of intuitive physics in robotics,
teaching an agent to predict the effects of its actions in novel environments. In
Fragkiadaki et al. (2016), the effects of hitting billiard balls on a simulated two-
dimensional table are predicted. Object positions and applied forces are given. To
predict the effect of collisions, a glimpse around the current object position is taken,
from which a CNN extracts useful visual information about nearby objects or walls.
The approach struggles to simulate scenarios with more than one ball realistically. In
Agrawal et al. (2016) a similar approach is used to teach a real robot to push objects
to goal locations from video input alone.

3.2.2 Relational Physics using Graph Neural Networks
Neural Prediction Engine. Chang et al. (2017) present the Neural Prediction Engine
(NPE), which uses a neural network to predict future states for each object indi-
vidually. Instead of relying on visual attention via glimpses, the NPE models the
interactions for object o by applying an interaction network to each nearby object o′.
While not explicitly written down by the original authors, the next-state prediction
for each object o is given by

∆vo = A

∑
o′ 6=o

1
[
‖ro − ro

′‖ < d
]
I(zo, zo

′
), zo

 , (3.4)

the sum of its interactions I(·) and the previous state zo aggregated by A(·), where
both functions are parametrised using MLPs. Here, ro ⊂ zo are two-dimensional
position vectors, and the states zo contain extrinsic properties (positions, velocities,
orientations, angular velocity) and intrinsic properties (mass, object type, object
size). The result ∆vo is the change in velocity for object o between two consecutive,
fixed-length timesteps. The neighbourhood mask 1 [·] is a hard and prespecified
selection criterion, which posits that only interactions between objects that are within
Euclidean distance d of one another are considered. This hard masking allows NPE
to scale to many-object scenarios. The approach relies on complete state supervision
and does not feature any visual component.

Interaction Networks. On the very same day as NPE, Battaglia et al. (2016) intro-
duced Interaction Networks (INs). Like, NPE they process object states and not
visual input, and they require full supervision with respect to object properties and
physics parameters. Unlike NPE, the authors demonstrate that INs can handle a
variety of physics scenarios in addition to the bouncing ball data of NPE, such as
n-body gravitational simulations, invisible springs between objects, or non-rigid
dynamics (soft strings – realised as a chain of springs – falling under gravity and
wrapping around hard objects). Gravitational interactions and invisible springs act
at a distance, such that NPE’s local neighbourhood assumption necessarily leads
to modelling failure. Instead, INs require the supervised specification of a O × O,
non-symmetric, binary interaction matrix, indicating which objects interact with one
another. Again, INs rely on complete state supervision and do not feature a visual
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component. NPE and INs have been shown to outperform general-purpose neural
networks such as MLPs or LSTMs on trajectory prediction tasks.

Visual Interaction Networks. Watters et al. (2017) then introduce Visual Interaction
Networks (VINs), which extend INs in multiple meaningful ways. VINs can infer
latent object positions, velocities, and properties from a stack of visual observations
using a CNN. A dynamics model, similar to INs, then predicts future object states,
but not observations. The model performs well on a number of physics scenarios and
requires only image-state pairs for learning, where states contain object positions and
velocities. Figure 3.2b illustrates results obtained by VIN. No additional supervisory
signals, such as object properties or relation matrices as in NPE or IN, are needed.
However, VIN needs to rely on colour cues such that the object order with respect
to the MSE loss used for training between predicted and ground truth states is
consistent. Instead of making predictions using only the previous state, VIN predicts
future states by aggregating over predictions made using the last C states. At time t,
for each offset c ∈ {0, . . . , C − 1}, a different interaction core predicts zt+1 from the
observation zt−c. From Watters et al. (2017, App. 8.2), we can deduce that this
prediction is given by

zot+1 = U c

Ac

∑
o′ 6=o

Ic(zot−c, z
o′
t−c) +N c(zot−c)

 , zot−c

 , (3.5)

where the similarities to Eq. (3.4) are apparent and U c, Ac, Ic, N c are MLPs shared
over all objects. Unlike IN and NPE, VIN generally assumes interactions between
all pairs of objects. An aggregation MLP aggregates over the predictions from the
individual offsets. Notably, VINs outperform INs, which have access to ground truth
states. In addition to the added flexibility from multiple prediction cores, the authors
speculate that the observation noise may have a regularising effect, a discussion we
will pick up later in Chapter 5.

The above approaches exploit much prior knowledge related to our understanding
of physics. Equation (3.5) contains all of the crucial ideas: The prediction for the
next state of object o should contain a sum of interaction terms of object o with all
other objects o′ 6= o, as well as a term relying only on the object itself, which allows
to model movement in the absence of interactions. The function which computes the
interactions is shared over all objects. Likewise, the same state prediction Eq. (3.4)
function is applied to all objects. Building a physics predictor in such a way is an
excellent example of how to leverage prior knowledge to build structured models,
which outperform general-purpose equivalents. Because of its modular design, this
approach trivially generalises to unseen numbers of objects. While Fragkiadaki et al.
(2016) also predict future states for each object independently, their handling of
interactions using the visual attention glimpses is somewhat implicit, which likely
explains the observed deficient performance when modelling collisions between
objects.

Graph Neural Networks. Approaches such as the above may be seen as instances
of Graph Neural Networks (GNNs). This view was popularised by Battaglia et al.
(2016). For VIN, we can imagine a fully connected, directed graph between all
objects. At time t, each object state zot is associated with a node in that graph, and
edges indicate the possibility of interactions between two objects. In graph neural
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Figure 3.2.: (a) Overview of the Graph Neural Network (GNN) architecture for relational
physics modelling. In our case, a fully connected graph between all object
states (z1t , z

2
t , z

3
t ) is assumed. The GNN makes future state predictions using

the same set of functions for each object, where each object is chosen to be
the focus node once. The node function N(zot ) is applied to the focus node o,
and for each neighbour of the focus node, the interaction function I(zot , z

o′

t )
is applied for all focus-node–neighbour-node pairs (o, o′). The aggregation
function yields the next state by aggregating over the results of I and N , zot+1 =

A(N(zot ),
∑

o′ I(zot , z
o′

t )). While the procedure is depicted as a sequence in the
graphic, i. e. one object is predicted after the other, prediction can easily be
parallelised in implementation. (b) Example simulations obtained from the
Visual Interaction Network (VIN). The left column shows an example input
frame to the VIN architecture, the centre column visualises true trajectories
taken by the balls in the various physics simulations, and the final column shows
VIN’s well-matching predictions. Simulation images in (b) reconstructed from
Watters et al. (2017).

networks, the same set of operations is applied locally at each node zo. A set of GNN
operations matching the above would be: (a) the neural network N(zo) is applied to
the node itself, (b) then I(zo, zo

′
) is applied for each neighbour o′ of o on the graph,

and (c) the results of the operations (a) and (b) are aggregated with A(·), which
finally yields the output of the GNN at node zo. This architecture is demonstrated
in Fig. 3.2a. Comparing this to the above models, we can now clearly see how VIN
corresponds to a GNN with edges between all objects, IN corresponds to a GNN with
edges specified by the interaction matrix, and NPE corresponds to a GNN where
edges are assigned dynamically depending on the current distances between objects.
For a thorough introduction and review of GNNs, the reader is referred to either
Zhou et al. (2018) or Wu et al. (2019b). STOVE uses a GNN similar to Eq. (3.5) as
its physics prediction module, which we will present in Section 4.2.

3.2.3 Tangential Developments
Zheng et al. (2018) extend INs to extract physical properties from object state tra-
jectories. Simulator-based approaches remain popular, and Wu et al. (2016, 2017)
make Galileo more efficient and performant by replacing expensive sampling-based
inference routines with neural networks. Jaques et al. (2020) use a differentiable
physics engine, which enables end-to-end gradient-based learning. Interaction mech-
anisms similar to I(·, ·) in Eq. (3.5) present a useful inductive bias to other tasks in
machine learning which require reasoning about relations between entities. Santoro
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et al. (2017) introduce Relation Networks (RNs) and show that such interaction
mechanisms are useful to solve a variety of visual or text-based question answering
tasks.

Physical Tracking. Ehrhardt et al. (2018) learn a multi object-tracker using the phys-
ically motivated principles of causality and equivariance, resulting in an adversarial
style training with data augmentation. For each stack of input frames, a randomly
warped version is created. Equivariance then ensures that the warped version of the
input images results in an appropriately warped trajectory. Causality is motivated by
the desired smoothness of the obtained trajectories. Random permutations of real
trajectories, which violate smoothness, are generated, and a discriminator is trained
to discern between real and permutated trajectories produced by the tracker. Also
relevant is their later work (Ehrhardt et al., 2019), where a single model learns to
accommodate a variety of physics simulations by explicitly inferring the currently
active scenario from a stack of past observations.

GNNs for Particle Simulations. GNNs have been applied to physical simulations
of increasing complexity in supervised scenarios. Sanchez-Gonzalez et al. (2018)
propose a generalisation of INs and apply it to the DeepMind Control Suite (Tassa
et al., 2018). Recently, Li et al. (2019) and Sanchez-Gonzalez et al. (2020) have
used large GNNs with up to ten-thousand particles to obtain realistic simulations of
fluids, rigid objects, or deformable objects in three-dimensional environments.

Neural ODEs. Another interesting and related line of work are Neural Ordinary
Differential Equations (Neural ODEs) (Chen et al., 2018), where neural networks
are used to parametrise the time derivative of some unknown dynamical system
df(z(t))/dt = NN(z(t), t;θ). This ODE is then solved using differentiable versions of
standard ODE integrators and gradient-based learning optimises the parameters θ of
the network to produce time derivatives which result in trajectories z(t) in agreement
with the training set. Neural ODEs can model continuous-time processes and easily
incorporate irregularily sampled data. They can be seen as infinite depth normalising
flows. Lutter et al. (2019), Cranmer et al. (2020), Greydanus et al. (2019), and
Toth et al. (2020) explicitly constrain neural ODEs to modelling physical systems by
interpreting the neural ODE in relation to a physical Hamiltonian or Lagrangian.
They show successful application on dynamical systems such as chaotic pendulums or
n-body systems, where they achieve energy conservation. Kolter and Manek (2019)
similarly constrain a neural ODE to produce stable dynamics using the concept of
Lyapunov functions from chaos theory. The above approaches will likely fail, if
the underlying dynamics may not be well approximated by an ODE. It is unclear
how well they scale to discontinuous dynamics or more general scenarios. However,
extensions of neural ODEs to stochastic processes exist (Jia and Benson, 2019).

3.3 Video Modelling
3.3.1 General-Purpose Video Models
We refer to video prediction as the conditional prediction of future frames x̃t+1

from a history of observations (x1, . . . ,xt), where observations correspond to high-
dimensional images. Often, such models are trained in self-supervised fashion
by comparing the prediction x̃t+1 to the true and readily observable xt+1. Video
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modelling is treated akin to image modelling, where, depending on the application,
unconditional sampling of new videos, tractable video likelihood evaluation, or
the inference of informative sequence- or image-level latents is desired. General-
purpose non-linear latent state sequence models, such as the VRNN (Chung et al.,
2015), see Section 2.3.2, may of course also be used to process and predict future
frames in videos. In fact, the VRNN is a popular baseline in the object-aware video
modelling community. However, other architectures purpose-built for videos also
exist. They are often motivated by applications in (model-based) reinforcement
learning, prediction, classification, or content creation.

The discussion of generative models of video is similar to that for sequence models,
see Chapter 2, and image models in Section 3.1 above. Srivastava et al. (2015)
present an early approach to multi-step video prediction. Simple enough, they use
an LSTM which consumes the sequence of images and is trained in a self-supervised
fashion. The fully connected layers of a standard LSTM are unsuited to accommodate
complex visual scenarios. This motivates Xingjian et al. (2015) to introduce the
Convolutional LSTM (ConvLSTM), combining CNNs and LSTMs, which they apply
to precipitation forecasting, outperforming state-of-the-art alternatives. Oh et al.
(2015) extend this and feed a small stack of frames to a CNN-based autoencoding
architecture to produce action-conditioned frame predictions in ATARI video games.
For up to 100 frames, they achieve stable predictions useful for applications in
model-based control. Multiple models (Finn et al., 2016; Liu et al., 2017; Mathieu
et al., 2016) reframe video prediction as pixel-wise motion prediction, i. e. optical
flow. A MSE-based loss does not differentiate well between a model that has learned
visually appealing behaviour and one that has not. Likewise, MSE-style losses are
incompatible with multiple futures, i. e. multiple plausible future frame predictions
given the history of observations. This can lead to blurry or implausible output. To
approach these problems Vondrick et al. (2016), Mathieu et al. (2016), and Lee
et al. (2018) employ a GAN-style adversarial loss. Similar to our argument for
the advantage of including stochasticity in sequence models, many have argued
that deterministic models fail to capture the stochasticity inherent to videos as well.
Therefore, many in the community have shifted towards probabilistic models of
videos such as Kalchbrenner et al. (2017), Babaeizadeh et al. (2018), Lee et al.
(2018), or Denton and Fergus (2018). Many of these approaches can be set in
relation to the non-linear sequence models of Section 2.3. Finally and recently,
Kumar et al. (2020) apply normalising flows to video modelling, while Weissenborn
et al. (2019) present an autoregressive approach based on self-attention networks.

3.3.2 Object-Aware Approaches
An object-based representation of videos learned in an unsupervised fashion could
be hugely beneficial to applications, for example in reinforcement learning and
robotics. Reasoning about the effects of actions and understanding the interactions
between the objects present is crucial to learning intelligent agents. While such
reasoning capability is difficult to obtain from raw pixels directly, object-based video
models and their latent representations might provide a compelling inductive bias.
This argument for object-aware video models is similar to that made for object-
aware image models. For object-aware video models, one can additionally make
the case that future frame predictions should be superior to unstructured models in
suitable scenarios. If the objects are clearly discernible and move predictably, e. g.
determined by physical laws or external actions, it is much easier to understand
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and predict the movement of a limited number of objects rather than that of many
individual, unstructured pixels. This idea is at the core of object-aware image
modelling. Additionally, learning object-based representations from video should in
fact be simpler than learning them from single images. Compared to object-aware
image models, the presence of time in video has been argued to be a helpful bias for
object detection in video models (Kosiorek et al., 2018). After all, if a mass of pixels
moves coherently and predictably throughout the frames of the video, it is likely to
be part of the same object. Kosiorek et al. (2018) and Hsieh et al. (2018) present
two approaches which extend the Attend-Infer-Repeat framework to sequences. Both
are highly related work to our approach, and we will compare against them in
Chapter 5.

SQAIR. Kosiorek et al. (2018) propose Sequential Attend-Infer-Repeat (SQAIR)
to extend AIR to sequences. Much of the complexity in SQAIR is in its aspiration
to handle a varying number of objects between different frames of the same video.
At each timestep, SQAIR not only has to discover all objects, but it has to decide if
any object can be matched with an object from the previous frame, or if it instead
belongs to a new object which has just appeared in the video. While AIR uses
a single LSTM to attend to the objects of a static image, SQAIR uses a total of
three different LSTMs for its inference routine: One updates object states between
frames, another models relations between objects, and lastly, a third LSTM is used
to discover new objects. This mesh of RNNs across time and space leads to O(O · T )
algorithmic complexity. The processes of old-object propagation and new-object
discovery are likewise present in the generative model. The authors find that SQAIR
is indeed more successful than AIR at discerning partially or heavily occluded objects,
demonstrating that video does indeed have a regularising effect on object detection.
SQAIR is applied to a simulated dataset of moving handwritten numbers – an
animated version of MNIST (LeCun et al., 1998) – and simple but realistic CCTV
video footage of walking pedestrians.

DDPAE. Concurrently to SQAIR, Hsieh et al. (2018) introduce the Decompositional
Disentangled Predictive Autoencoder (DDPAE). Like SQAIR, DDPAE presents an
extension of AIR to videos. Compared to SQAIR, the architecture of DDPAE is
conceptually simpler. It does not include a fully generative model of videos and
focuses on conditional generation instead. Also, it lacks the complex discovery
and propagation networks, instead assuming a constant number of objects with
constant appearance per sequence. The constant appearance is inferred from an
aggregation RNN which smoothes over all appearance vectors from the individual
frames. This mechanism results in good modelling of overlapping objects. For
inference, DDPAE also uses a two-dimensional recurrence over objects and time,
such that they arrive at the same algorithmic complexity as SQAIR. For future state
generation, a RNN-based model is proposed, which the authors claim is able to
handle interactions. Here, the DDPAE is again a bit more explicit than SQAIR,
as future states are predicted as offsets to previous states. Like the original AIR,
the authors demonstrate generalisation to novel numbers of objects. DDPAE is
demonstrated on moving MNIST data and bouncing balls.

NEM. A distinctive approach is presented by Greff et al. (2017). Neural Expectation
Maximisation (NEM) learns a pixel-wise mixture model, using a neural variant of
the expectation maximisation (EM) algorithm. Essentially, a neural network predicts
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the pixel-wise mixture distribution from latent cluster representations. They unroll
and backpropagate through the EM steps. Unlike in AIR, objects in NEM do not
necessarily correspond to a localised collection of pixels. Its iterative procedure
needs multiple steps, about ten, for the clusters to converge, which is undesirable
for many applications. Additionally, NEM requires binarised input with added noise
to avoid unstable behaviour. Notably, the successor, Relational Neural Expectation
Maximisation (R-NEM), employs a relational reasoning module between objects
similar to the approaches of Battaglia et al. (2016) and Santoro et al. (2017).

Object-aware sequence models have not been shown to be capable of modelling
realistic videos. However, currently, unstructured approaches show only limited
performance in this domain as well. Nevertheless, on low-complexity videos with
clearly defined objects, object-based approaches regularly outperform unstructured
models. This is currently restricted to simulated and visually simple, two- or three-
dimensional environments. One can only speculate that some sort of object-inspired
structure should also be beneficial in modelling real videos. Therefore, scaling
object-aware approaches to such environments presents a fruitful avenue of future
work. We will now discuss some recent and tangential developments related to
object-aware video models.

3.3.3 Tangential Developments
Approaches such as Finn et al. (2016) and Goel et al. (2018) model the move-
ment between two frames of video in terms of the movement of a fixed number of
pixel-wise movement masks. While these approaches are not necessarily motivated
by future frame prediction, they may still obtain an object-like representation and
segmentation, which they demonstrate to be beneficial to reinforcement learning
in ATARI video games and robotics. As many approaches to object-oriented video
prediction are motivated by such applications, a rising amount of work fuses rein-
forcement learning models and object-based representations. For example, Watters
et al. (2019) use object-representations obtained from a MONet-like vision mod-
ule for data-efficient model-based reinforcement learning in a simple, sprite-based,
two-dimensional simulation.

Since the proposal of our model, a number of new and related approaches have been
published. Jiang et al. (2020) parallelise the attention mechanism in SQAIR, such
that they are able to demonstrate the successful application of their method to scenes
with more than 60 objects. Another recent proposal by Akhundov et al. (2019),
assumes a Markovian state space for dynamics modelling, similar to our approach.
Kipf et al. (2020) learn an object-oriented latent embedding on sequences without
relying on pixel reconstructions using a contrastive loss objective, which solely
applies to the latent space embeddings. They employ a GNN to model transitions
in this latent space. In Fuchs et al. (2019), the authors use GNNs to extend their
attention-based tracking algorithm (Kosiorek et al., 2017) to the multi-object setting.
Veerapaneni et al. (2019) introduce OP3, making first steps towards generalising a
MONet-like image model to sequences with a GNN-based transition model. OP3 is
applied for planning in a discrete prediction task.
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4Structured Object-Aware
Physics Prediction for Video
Modelling and Planning

After the previous chapters have introduced the motivation for object-aware video
modelling, relevant concepts, and related works, we may finally turn our attention
to Structured Object-Aware Physics Prediction for Video Modelling and Planning
(STOVE).1,2 The theoretical formulation of STOVE in this chapter and its experimen-
tal evaluation in the following chapter comprise the main contribution of this thesis.
STOVE presents a self-supervised approach to learning models of videos of physically
interacting objects. Given a sequence of images {xt}Tt=1, we assume the existence
of Markovian latent states {zt}Tt=1, which fully explain the observations and, given
the right transition function, allow for the prediction of future states and observa-
tions. STOVE is obtained as the composition of a Sum-Product Attend-Infer-Repeat
(SuPAIR) image model, see Section 3.1.2, and a Graph Neural Network (GNN) for
relational physics modelling, predicting transitions in latent space, see Section 3.2.2.
The above combination gives a non-linear latent state space model (SSM), see Sec-
tion 2.3. Unlike in linear state space models, the conditional distributions are not
parametrised by linear operations but rather neural networks or deep probabilistic
models. To allow for tractable learning, we introduce an amortised variational ap-
proximation to the true posterior and optimise all model components jointly via the
resulting ELBO. The SuPAIR-like image model interfaces with the observations xt in
pixel space, inferring latent state distributions q(zt | xt) and evaluating conditional
image likelihoods p(xt | zt). The physics model then propagates these states forward
in time, realising the transition distribution p(zt+1 | zt). At the time of publication,
STOVE presented the first extension of AIR image models to relational physical
reasoning in videos. While reading this chapter, the reader is referred to the Figs. 4.1
and 4.2 for reference. Figure 4.1 gives a detailed overview of the workings of STOVE,
while Fig. 4.2 displays the underlying graphical model and the structure of the latent
space. For a first overview of STOVE, let us introduce its defining characteristics:
structure, object-awareness, physics prediction, video modelling, and planning.

Structure. In comparison to other approaches, STOVE exhibits a large amount of
predefined structure. For one, the assumption of Markovian latent states in both
the generative model and inference routine is decidedly restricting, compared to
many of the much more general approaches in Section 2.3 and Chapter 3, such

1A PyTorch implementation of STOVE is provided at github.com/jlko/STOVE.
2Concurrently to this thesis, a paper on STOVE will be published in the proceedings of the Eighth

International Conference of Learning Representations. This thesis and the paper share some of the
results and figures presented. While the work of my co-authors has been immeasurably important for
the creation of the paper, unless otherwise mentioned, the figures presented and experiments described
in this thesis have been created and performed by me.
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Figure 4.1.: Overview of STOVE’s architecture. (Centre left) At time t, the input image xt

is processed by an LSTM in order to obtain a proposal distribution over object
states q(zt | xt). (Top left) A separate proposal q(zt | zt−1) is obtained by
propagating the previous state zt−1 using the dynamics model. (Centre) The
multiplication of both proposal distributions yields the final variational distribu-
tion q(zt | zt−1,xt). (Right) We sample zt from this distribution to evaluate the
generative distribution p(zt | zt−1)p(xt | zt), where p(zt | zt−1) shares means –
but not variances – with q(zt | zt−1), and p(xt | zt) can be obtained by direct
evaluation of xt in the sum-product networks, using the spatial transformer
operations, ST, for the objects. Not shown is the dependence on xt−1 in the
inference routine, which allows for the explicit inference of velocities from
position differences. Figure and caption also appearing in Kossen et al. (2020).

as VRNN and SQAIR. Additionally, the latent space itself is structured. Competing
approaches in video prediction often assume a largely unstructured latent space,
usually with a normally-distributed prior. After training their models, they then look
for meaning in the resulting latent space. In contrast to this, we directly specify a
meaningful latent space, consisting of per object positions, velocities, and sizes. This
further injects prior knowledge into the model, directly benefitting model stability,
performance, and interpretability. In our experiments, this structure does not hinder
generalisation on the data explored. Instead, the right kind of structure benefits
performance and interpretability due to a clear allocation of responsibilities between
model components. As the SuPAIR-like image model does not rely on latent states
to model the object appearances, appearance information does not compete with
dynamics information in the latent space. Of course, the assumptions of clearly
defined object positions, velocities, and sizes hold in all our experiments and would,
depending on the application, have to be revisited. The following paragraph lists a
further structural constraint of STOVE.
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Object-Awareness. STOVE reasons about the world in terms of objects. As is com-
mon for AIR-derivatives, see Section 3.1, images are constructed as the superposition
of objects atop a background. An image may be described in terms of object-specific
latent states zt = {zot}

O
o=1. A video is a sequence of T images, which likewise has a

corresponding sequence of latent states z = {zt}Tt=1. At each timestep, per object
positions, velocities, and sizes are inferred from the given images using the scene
model or propagated from previous latent states by the dynamics model. While
object-centric modelling of images is a novelty, object-centrality in physics modelling,
where the goal is to approximate a sequence of object states, is an obvious pre-
requisite. For videos, only few approaches to object-oriented modelling exist, see
Chapter 3.

Physics Prediction. The movement of a single object in a video is rarely independent
of its surrounding. Instead, complex interactions between objects affect individual
object trajectories. This is true for real-world scenarios such as the movements of
a self-driving car, as well as simpler applications such as video games. In physics
prediction and unsupervised video modelling, toy data sets of physically interacting
objects, such as bouncing or gravitationally attracted balls, are often used to mimic
some of this complexity. In such simulations, the trajectories of the individual objects
are highly non-linear and dependent on interactions with other objects. In STOVE,
the transition of the per-object latent states p(zot | zt−1) is realised by a state-of-the-
art physics prediction model, a Graph Neural Network (GNN). GNNs are special
relational architectures which can be used to facilitate the modelling of interactive
behaviour in physics simulations. At the time of publication and to the best of our
knowledge, STOVE is the first AIR-video model capable of generatively modelling
complex physical interactions. Our experiments show that models which do not
include such a relational component in their transition model fail to appropriately
model interactions between objects and exhibit unrealistic trajectory predictions. We
suspect that such relational modelling has meaning beyond toy datasets and will
likely be important for applications in real-world scenarios.

Video Modelling. A video model naturally arises from the components above. The
image model allows STOVE to infer latent states from images q(zt | xt) as well as
to render images from states p(xt | zt), while the sequence model allows for the
propagation of latent states through time p(zt | zt+1). Therefore, the combination
of the model over the images and the physics model over the states yields a model
over a sequence of images – a model of videos. The dynamics model and the image
model only interface via the object positions and velocities, see discussion below.
While STOVE is expressive enough for the scenarios which we investigate, it would
need to be adapted for more complex situations where objects may change their
visual appearance during the video sequence.

Planning. We propose an extension of STOVE from videos to video games, i. e. to
the setting of model-based control. For this, we modify STOVE such that it can
predict future frames, states, and rewards conditioned on external control inputs, or
actions. In other words, STOVE is employed as a world model, a full simulation of the
interactive environment. One can then use STOVE in tandem with planning methods,
acting in the environment to maximise rewards. The extension of STOVE beyond
strict physical simulation is an important step towards obtaining video models for
more general scenarios with wider varieties of interactions and dynamics.
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By simply going over the main characteristics that, more or less, spell out the letters
of STOVE, we have already introduced a significant proportion of what sets STOVE
apart from other approaches. We will now introduce the details of the STOVE
architecture.

4.1 Sum-Product Attend Infer Repeat for Image
Modelling

We use a variation of the Sum-Product Attend-Infer-Repeat (SuPAIR) image model,
as introduced in Section 3.1.2 and by Stelzner et al. (2019), to model the distribution
of images x in object-aware fashion. The focus of STOVE is the proposal of a video
model capable of modelling complex interactions between objects. We therefore
avoid the complexities of dealing with a varying number of objects during the
sequence, see SQAIR (Kosiorek et al., 2018) and Section 3.3 for further details. The
original SuPAIR architecture is simplified by constraining SuPAIR to a fixed number
of objects O. In Section 3.1.2, we have directly proposed this constrained SuPAIR
variant. The assumption of constant O simplifies inference, as we do not need to
evaluate the expectation with respect to O in the ELBO during training. Extending
STOVE to a varying object count, which stays constant over the sequence, similar to
Hsieh et al. (2018), would be possible without much effort. Additionally, the original
SuPAIR employs an auxiliary loss term, which penalises overlapping bounding boxes
between objects. Without it, SuPAIR can predict superfluous objects without being
penalised. This is not needed in the O-constrained version of SuPAIR.3

Otherwise, there are deliberately few changes from the original SuPAIR architecture.
Therefore, the components in STOVE take on clearly designed roles and have few but
meaningful interactions between each other. In Section 3.1.2, we have introduced the
conditional likelihood model p(x | z), Eq. (3.3), which models the appearance of an
image x using an SPN to assess object likelihoods, an SPN for background likelihoods,
and spatial transformer layers. Likewise, we have introduced the recognition model
q(z | x), Eq. (3.1), which infers object latent positions and sizes zo(pos, size) in recurrent
fashion. For STOVE, we use these components without any further changes. However,
as we are now considering sequences of images, we endow the variables with an
index t, writing p(xt | zt), q(zt | xt), and zot,(pos, size) instead.

As a further inductive bias, we want to introduce velocities zot,velo to the latent state.
While the experiments presented in Section 5.10 show that STOVE can indeed
discover velocities and does not need them a priori, explicit velocities do provide an
important bias to improve model training. Also, they are straightforward for us to

3In the original SuPAIR, if a superfluously predicted object o′ is completely on top of a previous
bounding box, all pixels of o′ are marginalised over, such that it does not contribute to the ELBO, but
leads to a wrong object count. One therefore needs an auxiliary loss term to combat this behaviour.
In the O-constrained version, such behaviour may not occur because each bounding box needs to
cover an object. If a bounding box completely overlaps with a previous box, such that it is completely
marginalised over, an object of the scene is missed by the attention model. This object, which is
necessarily not covered by any bounding box, then causes a loss because it must be part of the
background, and the background SPN is likely to assign a low background likelihood.

46 Chapter 4 Structured Object-Aware Physics Prediction for Video Modelling and Planning



implement from position differences as

q(zot,velo | xt,xt−1) = N (zot,velo;µo
t, pos, i − µo

t−1, pos, i,

(σ2)ot, pos, i + (σ2)ot−1, pos, i) , (4.1)

where the uncertainty results from the additive combination of the two independent
Gaussian position variables in a principled probabilistic way. The subscript i refers
to the fact that the mean and variance proposals for the latent state are inferred by
the image and not the dynamics model.

A few hyperparameters guide the predictions of SuPAIR. A possible failure mode of
SuPAIR is that the background model may learn to model full scenes on its own,
disregarding the object mechanism. To avoid this behaviour, Stelzner et al. (2019)
have found it helpful to bias the structure of the background SPN towards less
complex appearances. Another possible failure is the prediction of a single image-
sized object or the prediction of zero-sized objects. To avoid such problems, the size
of objects are lower- and upper-bounded to be 10 % and 90 % of the total image size.
See Appendix A.4 for an exhaustive list of hyperparameters and default values.

In addition to training speed, there is an unexpected advantage of using SuPAIR over
AIR in the context of physics prediction. We require the obtained object positions
from the attention network to be as precise as possible. For this, it is essential that the
object is always well-centred within the bounding box. In SuPAIR, we can observe
this property and notice a decrease in likelihood for off-centre bounding boxes.
In other AIR-like models, this is not necessarily the case. Due to the un-structure
of the latent space, AIR may learn latent states which encode the position of the
object within the bounding box, yielding accurate reconstructions even for off-centre
boxes. While additional information in the latent state will incur a loss in the KL
divergence, such behaviour is still observed in AIR models. Because SuPAIR avoids
the unstructured appearance latent, it cannot encode object positions within the
bounding box and consequently learns to predict well-centred bounding boxes.

As SuPAIR is already a probabilistic model framed in terms of amortised varia-
tional inference, its integration into the STOVE architecture is almost effortless, see
Section 4.3.

4.2 Graph Neural Networks for Physics Modelling

In Section 3.2.2, relational physics modelling was presented from the perspective of
supervised machine learning, where learning is usually accomplished by minimising
a squared loss between predicted and observed trajectories from the training set. In
STOVE, we need to embed such a physics model into the probabilistic state space
model. Instead of directly predicting future states zt+1, the physics model needs to
predict transition probabilities p(zt+1 | zt). A simple approach to accomplish this is
to use the predictions from the physics model as means of a factorised Gaussian with
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fixed standard deviations

µ̃o
t+1, (pos, velo, latent) = A

N(zot ) +
∑
o′ 6=o

α(zot , z
o′
t ) I(zot , z

o′
t )

 (4.2)

µo
t+1, (pos, velo, latent) = U

(
µ̃o
t+1, (pos, velo, latent), z

o
t

)
. (4.3)

We have introduced the governing ideas behind relational physics modelling already
in Section 3.2.2. The prediction of the future latent state is given by a concatenation
of functions, Eqs. (4.2) and (4.3), which is applied to each object independently.
For each object, the prediction is given by a function N(zot ) applied to the current
focus node, modelling object movement independent of interactions, plus a sum
over its interactions I(zot , z

o′
t ) with neighbouring objects o′. The function A(·) is used

to aggregate over these terms. Similarly, U(·) represents aggregation in addition to
a skip connection to the input state and, for reasons that will become obvious in Sec-
tion 4.4, we introduce the intermediate results µ̃o

t+1, (pos, velo, latent). The interaction
function is reused over all objects pairs. The different functions are parametrised
by MLPs. In addition to the familiar functions mentioned above, we introduce an
attention term α(zot , z

o′
t ) > 0. Like the interaction module, it is applied to each

pair of focus object o and neighbouring object o′ and shared over predictions for all
objects o ∈ (1, . . . , O). The attention term strictly increases the modelling flexibility
of STOVE. In simulation settings where not all possible interactions between objects
might be relevant at all times, α(zot , z

o′
t ) presents a learned version of the hard and

prespecified mechanism employed by NPE in Eq. (3.4). This allows STOVE to model
scenarios with discrete interactions, such as collisions, in a similar fashion as NPE,
where intuitively, the attention term can switch these interactions on and off, while
the interaction term models their outcome. However, STOVE can also accommo-
date scenarios where a hard attention mechanism is not appropriate, combining
the advantages of VIN and NPE. A similar attention mechanism is used by R-NEM,
introduced in Section 3.3. Unlike VIN, we find that a single prediction core suffices
for convincing performance.

Instead of predicting new states directly, NPE predicts velocity differences and uses
those to update states, see Section 3.3. Similarly, we bias STOVE towards predicting
new positions as offsets to old ones. This inductive bias is useful for scenarios with
smoothly moving objects. However, this offset is not given by zt,velo, as our velocity
estimate at time t relies on past information from t− 1 and is therefore inaccurate
during collisions, i. e. at the time of collision, the true, instantaneous velocity changes
are not yet reflected in our observational velocity. Instead, the offset to the last
position is predicted directly by the GNN. Otherwise, much of the structure of the
MLPs of the dynamics GNN is straightforward. They consist of a couple of layers of
fully connected neural networks, with skip connections and ReLU non-linearities.
Equation (4.3) is implemented efficiently and computed for all objects in parallel
using tensorised code. This is true also for the interactions, which are computed
in parallel using stacking and replicating operations. Appendix A.2 gives the full
details.

So far, we have introduced the object position, velocity, and size as latent space
components. For physics modelling, we extend the latent space by unstructured
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Figure 4.2.: (a) Depiction of the graphical model underlying STOVE. Black arrows denote the
generative mechanism and red arrows the inference procedure. The variational
distribution q(zt | zt−1,xt,xt−1) is formed by combining predictions from the
dynamics model q(zt | zt−1) and the object detection network q(zt | xt,xt−1).
(b) Components of the per-object latent state zot and corresponding variational
distributions. Note that the velocities are estimated based on the change in
positions between timesteps, inducing a dependency on xt−1. Figures adapted
from the original graphics by Karl Stelzner. Figures and caption first produced
for Kossen et al. (2020).

latent space zot,latent. In VAE fashion, this latent space is regularised towards

zo1,latent ∼ p(z
o
1,latent) = N (zo1,latent;0,1) . (4.4)

In essence, the motivation for this latent space is to give the GNN extra modelling
capabilities: Additional information about the object states not included in position,
approximate velocity, or size can be stored in the latent space by the GNN. For
example, the latent state space may be used to account for different dynamical
behaviour between objects. This may be needed because the same function Eq. (4.3)
is used to predict the dynamics of all objects. Therefore, without the latent space,
if two objects have the same position, velocity, and size, the GNN must predict the
same future state distribution. It cannot account for differences between objects
that are not present in the latent state. With the introduction of unstructured
latent space, such differences can now be reflected, which then allows the GNN
to account for them as well. Experiments have indicated that the unstructured
latent is indeed essential for modelling performance. In addition, preliminary
experiments have shown that the unstructured latents may contain higher order
derivatives, i. e. accelerations. The following reflections indicate that this may
indeed be necessary: We have already mentioned issues with the observational
velocity during collisions. Because we observe a discretised sequence of images,
the position differences observed during collisions usually do not correspond to
the true, instantaneous object velocities. It follows that the original latent space of
positions and observational velocities is, in a first order Markov model, not enough to
accurately model the dynamics because we cannot predict the outcome of collisions.
The unstructured latent space allows to account for that. See Section 5.10 for
further discussion. Even in the worst case, if the model does not need the latent
space in some scenario, it can easily be ignored and should not negatively affect
performance.
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4.3 Joint State Space Model
Above, we have established the two defining components of STOVE, the Sum-
Product Attend-Infer-Repeat (SuPAIR) image module and the Graph Neural Network
(GNN) relational physics module. We now identify them with the corresponding
distributions in our non-linear state space model, see Fig. 4.2.

For the generative model, we decompose the joint likelihood over observations and
latent states as

p(x1:T , z1:T ) = p(x1 | z1)p(z1)
T∏
t=2

p(xt | zt) p(zt | zt−1) , (4.5)

using the chain rule of probability and the Markov property of the latent states. Here,
p(xt | zt) is given by the generative model of SuPAIR, Eq. (3.3), and p(zt | zt−1) is as
described by Eq. (4.3). The prior p(z0) is assembled from the uniform priors over
object positions and sizes of SuPAIR and the normal prior over the unstructured
latents of the dynamics model.

As inference in the non-linear state space model is intractable, we formulate a
recognition model for amortised inference of z ∼ q(z | x), see Section 2.2. At
time t, we can use SuPAIR’s inference routine to infer latent states q(z | xt,xt−1).4

Such an approach is common in non-linear state space models, see the detailed
discussion in Section 2.3. However, in doing so, we would disregard all information
from the dynamics model. Instead, we can construct a joint estimate of the current
latent state position and velocity using information from both the image and the
dynamics model, by introducing a variational approximation to the dynamics model
q(zt, (pos, velo) | zt−1). A naïve approach to do this would be to construct a second
dynamics model with identical architecture but separate parameters. Instead, we effi-
ciently reuse the generative GNN for inference, i. e. the means of q(zt, (pos, velo) | zt−1)
and p(zt, (pos, velo) | zt−1) are identical and as given by Eq. (4.3). The benefits of this
reuse are discussed below. The joint estimate from both models is given as

q(zt, pos | xt,xt−1, zt−1)

∝ q(zt, pos | xt,xt−1) · q(zt, pos | zt−1) (4.6)

= N (zt, pos; µt, pos, i, σ
2
t, pos, i) · N (zt, pos; µt, pos, d, σ

2
t, pos ,d)

∝ N (zt, pos;µt, pos, σ
2
t, pos) (4.7)

µt, pos =
σ2
t, pos, d µt, pos, i + σ2

t, pos, i µt, pos, d

σ2
t, pos, d + σ2

t, pos, i
(4.8)

1

σ2
t, pos

=
1

σ2
t, pos, d

+
1

σ2
t, pos, i

, (4.9)

where the subscripts i and d denote the respective parameters from the image
and dynamics model, and we proceed the same way for q(zt, velo | xt,xt−1, zt−1).5

4Dependence on xt−1 serves as a reminder that we use the position distribution previously
predicted by SuPAIR to assemble an estimate of the velocity, see Eq. (4.1). As xt−1 is not used any
further, e. g. for filtering estimates about the current position or size, we might sometimes omit the
dependency to avoid confusion.

5In principle, one could also obtain estimates of zt,size in identical fashion. However, as this seemed
to impact model training negatively, we rely on SuPAIR only for the estimate of the object sizes.
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Because both models output factorised Gaussian distributions, their product is again
proportional Gaussian with means and variances as given by Eqs. (4.8) and (4.9).
Equation (4.6) presents a principled probabilistic way to combine uncertain Gaussian
information from two sources, similar to the measurement step in a Kalman filter
(Murphy, 2012, p. 641). The predicted state mean in Eq. (4.8) is weighted by the
uncertainty in the two source distributions, naturally preferring certain information
with small variances over uncertain information. Uncertainty in one measurement
increases the overall uncertainty. For the generative dynamics model p(zt | zt−1),
means are predicted by Eq. (4.3) and variances fixed. To allow the dynamics model
to make use of the probabilistic combination, we predict variances for q(zt | zt−1) as
additional outputs of the GNN, Eq. (4.3).

This approach is inspired by Becker-Ehmck et al. (2019) and Karl et al. (2017b),
who have, however, used it in single-object settings only. In addition to modelling
efficiency and more precise estimates of zt, they give another justification for the
reuse of the generative dynamics model for inference: The dependency of zt on the
dynamics model leads to a favourable backpropagation of the image model through
the dynamics model. In other words, because the quality of the samples zt now
depends on the dynamics model, the dynamics model becomes crucial for obtaining
a well-working model. If the dynamics model provides bad or uncertain estimates,
samples are bad, and learning is significantly hindered for all model components,
including the image model. Without this mechanism, a bad dynamics model would
lead to a penalty in the transition prior, Eq. (4.5), but the image model could still
be trained well, as samples would be unaffected. Furthermore, this mechanism
is an algorithmically efficient way to couple inference for dynamics and image
models without introducing computational burden, as SuPAIR inference may still
be performed for all images in parallel. SQAIR and DDPAE instead introduce a
costly double recurrence, with complexity O(O · T ) over objects and time to form
estimates zt, see Section 3.3.2. STOVE instead requires O inference operations for
all images in parallel, followed by T prediction steps for the dynamics model for all
objects in parallel, keeping the total complexity to only O(O + T ).

For the sequence of observations x1:T and corresponding latent states z1:T , we
decompose the recognition distribution as

q(z1:T | x1:T ) = q(z1 | x1)

T∏
t=2

q(zt | xt,xt−1, zt−1) , (4.10)

where q(zt | xt,xt−1, zt−1) is given by Eq. (4.6). Note that similar to the discussion
in Section 2.3, we would also be allowed to condition on future observations in the
recognition network. However, similar to Krishnan et al. (2017), we have found
the above formulation to be sufficient. The initialisation of the model is given by
q(z1 | x1), which is obtained from the image model only, see Appendix A.3 for full
details of model initialisation.

We train the generative model and the recognition model jointly by maximising the
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ELBO, Eq. (2.10), which for a sequence of images x1:T is given by

log p(x1:T ) ≥ Eq(z1:T |x1:T )

{
log

p(x1:T , z1:T )

q(z1:T | x1:T )

}
= Eq(z1:T |x1:T )

{
log

{
p(x1 | z1) p(z1)
q(z1 | x1)

}

+

T∑
t=2

log

{
p(xt | zt) p(zt | zt−1)
q(zt | xt,xt−1, zt−1)

}}
, (4.11)

where we approximate expectations Eq(z1:T |x1:T ){·} with a single chain of sam-
ples z1:T . In practice, STOVE is trained using mini-batch gradient descent, i. e.
gradients from Eq. (4.11) are accumulated over multiple sequences {(x1:T )n}Nb

n=1

before parameter updates are applied. We use the reparametrisation trick (Kingma
and Welling, 2014; Rezende et al., 2014), see Section 2.2, to correctly evaluate the
gradient with respect to the expectation over q(z1:T | x1:T ). Equation (4.11) is not
modified with ad-hoc auxiliary losses, as are common practice in supervised physics
models, and all model components are trained from scratch without pretraining.

The attention LSTM of STOVE’s image model is not guaranteed to preserve the object
order between individual timesteps. We therefore face the challenge of matching
the order of the object proposals between dynamics and image model and timesteps.
A simple but effective solution to this is to match states based on the Euclidean
distance ‖·‖ between their positions. More precisely, we first ensure a consistent
object order in the recognition distributions q(zt | xt) = N (zt; µt,i,σ

2
t,i) from the

image model i by matching objects between timesteps such that ‖µo
t,pos,i−µo′

t−1,pos,i‖
is minimised. Because the dynamics model is initialised from states inferred with the
attention LSTM, see Appendix A.3, we now have consistently sorted states over time
between the dynamics and object model. A naïve implementation of this sorting
problem has complexity O(O!). However, using the Hungarian algorithm (Kuhn,
1955), the assignment problem can be solved exactly in polynomial time O(O3). For
small O ≤ 3, the naïve implementation suffices. For large O, a greedy approximation
to the exact solution can be obtained in O(O2), which may however lead to adverse
effects on model training. Even for an exact implementation of matching, the solu-
tions obtained are correct only if objects move sufficiently little between timesteps,
which should, however, be a fair assumption for any reasonable discretisation of
continuous physics simulations. Note that many supervised approaches such as VIN
(Watters et al., 2017) circumvent the need for matching by assigning the objects a
fixed order based on their, presumed to be distinctive, visual appearance. This is not
required for STOVE, although we will investigate appearance-based matching, in
addition to the position distances, see Section 4.4. Section 6.1 discusses ways of
modifying the model structure to omit the need for matching.

As part of our attempt to fully disentangle dynamics and visuals, STOVE, like e. g.
DDPAE (Hsieh et al., 2018), cannot model changes in object appearance over time.
During rollouts, approximate MPE in the SPNs is used to render novel images
(Vergari et al., 2018). Karl et al. (2017a) have argued that a latent space which
competes between modelling visuals and dynamics is a significant cause for flawed
dynamics performance. STOVE does not struggle with this per construction, as
the latent space does not model object appearances. Extensions to STOVE that do
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xt−1 xt

at−1 rt

Figure 4.3.: (a) Depiction of the graphical model underlying the action-conditioned variant
of STOVE. State predictions of the dynamics model p(zt | zt−1,at−1) are now
conditioned on actions at−1 of the agent. The dynamics model is extended to
predict a distribution over the reward p(rt | zt−1,at−1). Black arrows denote
the generative mechanism and red arrows the inference procedure. The varia-
tional distribution q(zt | zt−1,at−1,xt,xt−1) is formed by combining predictions
from the dynamics model q(zt | zt−1,at−1) and the object detection network
q(zt | xt,xt−1). Figure adapted from original graphic by Karl Stelzner. Figure
and caption first produced for Kossen et al. (2020).

consider dynamically changing visuals are left for future work, although first steps
have already been taken by Voelcker (2020).

4.4 Conditioning on Actions
In reinforcement learning, an agent executes actions at to maximise an expectation
over future rewards r in an environment with observations xt. Recently, much
attention has been given to model-based approaches to reinforcement learning
in visually complex domains, see e. g. Schrittwieser et al. (2019), Kaiser et al.
(2020), Watters et al. (2019), or Veerapaneni et al. (2019). For such approaches, a
sophisticated simulator of the environment, or other relevant quantities, is required.
After such a simulator has been learned, it can, for example, be used for planning:
The simulator is used to predict the cumulative rewards of many different possible
sequences of actions, after which the most promising action is executed in the real
environment. This is in contrast to model-free approaches, which learn to act directly
in the environment. The acquisition of observation samples xt is often expensive in
real-world settings. A main motivation for model-based approaches is their presumed
sample efficiency, see the citations above for support of this.

An extension of STOVE allows its use as a world model in model-based control.6 Fig-
ure 4.3 reflects the changes to the graphical model of STOVE for action-conditioning.

6Model-based reinforcement learning remains a footnote in this thesis. The extension of STOVE as
an action-conditioned world-model was done in collaboration between all co-authors. The experiments
on STOVE’s predictive capabilities presented in this thesis were performed by me. Kossen et al. (2020)
contains additional experiments, where Monte-Carlo Tree Search (MCTS) (Coulom, 2006) was used
for planning with STOVE as a world-model and its performance compared to suitable baselines. Those
experiments were performed by Claas Voelcker and Marcel Hussing, and they are not presented in this
thesis. Further experiments with STOVE in the context of model-based reinforcement learning may
be found in Voelcker (2020) and Hussing (2020). For the scope of this thesis, we will only evaluate
STOVE’s capabilities as a generative action-conditioned video model, isolated from applications in
reinforcement learning.
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STOVE’s dynamics prediction is extended to consider actions p(zt | zt−1,at−1),
and likewise for the variational approximation q(zt | zt−1,at−1). The dynamics
model predicts states per object, Eq. (4.3), but we want STOVE to make no a priori
assumptions about which objects are affected by actions. Therefore, actions are
concatenated to the state representations of all objects in Eq. (4.3). This allows
the GNN to infer when actions are relevant for accurate prediction. Additionally,
the dynamics model is extended to provide predictions of rewards p(rt | zt−1,at−1)
via

µt+1, reward = R2

(
O∑

o=1

R1

(
µ̃o
t+1, (pos, velo, latent)

))
. (4.12)

In other words, we reuse intermediate results µ̃o
t+1, (pos, velo, latent) from the dynamics

GNN, Eq. (4.2). The agent receives a reward per observation, not per observation
and object. We therefore need to transform the per-object predictions of the GNN to
a single reward prediction per observation. A simple and order-invariant mechanism
to achieve this is the summation over all per-object terms. For added modelling
flexibility, R1 transforms the intermediate prediction before and R2 after summation,
see Appendix A.2 for details. It may seem like an arbitrary decision to reuse parts
of the dynamics model for reward prediction. However, similar to the prediction of
object dynamics, the observed reward is likely to depend on interactions between ob-
jects. It is therefore plausible that an intermediate representation µ̃o

t+1, (pos, velo, latent)
presents a suitable starting point for both reward and dynamics prediction. The
weight of the reward loss in the total ELBO is linearly increased during training until
a maximum weight is reached. This corresponds to a decrease in the variance of the
distribution p(rt | zt−1,at−1).

We stress that this extension of STOVE to action-conditioned video prediction
presents a departure from its original use for modelling of videos of physically
interacting objects. In physics simulation, all objects are subject to the same laws
of motion. In reinforcement learning environments, interactions between objects
are more general. Even for the simple application of action-conditioned video
prediction presented in Chapter 5, actions discretely affect the motion of a single
object, upsetting the balance of physical simulations. This presents a challenge to the
dynamics GNN, which models the motion of each object individually using the same
function. To lighten the burden on the GNN, we extend the object-representation
zot, (pos, velo, latent) in the dynamics model with visual input vo

t , such that the GNN may
directly discern if objects have different visual appearances. This latent appearance
encoding may be obtained from the representation encoded in the object SPN of
SuPAIR, see Vergari et al. (2018). Alternatively, a VAE, possibly with convolutional
layers, may be trained on the object glimpses to extract a latent encoding, as done
in AIR. We opt for a simple alternative and construct vo

t from simple summary
statistics: the mean pixel value per colour channel of the object glimpse defined by
the bounding box.
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5Evaluation and Discussion

This chapter contains a thorough experimental evaluation of STOVE. As introduced
in Chapter 4, STOVE’s primary capabilities are the inference of object states from a
sequence of observed images, the reconstruction of a sequence of observed images,
the prediction of future object state trajectories, and the prediction of future video
frames conditioned on a sequence of observed images. The prediction of future ob-
ject positions or video frames is a much more demanding task than reconstructing or
inferring from observations, as it much more relies on an adequate dynamics model
in addition to the image model. Therefore, the centrepiece of this evaluation will be a
comparison of STOVE’s predictive performance to previously proposed unsupervised
video prediction models, upon which STOVE can improve.1 We evaluate STOVE
on three tasks. Two of those tasks, billiards and gravity, are common benchmarks
for evaluating the capabilities of physics models. Additionally, we extend STOVE
to consider action-conditioned state transitions, evaluating STOVE’s capabilities as
a world model for planning. We further show that STOVE is able to conserve the
average kinetic energy in the billiards scenario. This leads to visually convincing
rollouts for extremely long timeframes, which have not been demonstrated by pre-
vious approaches. Also, experimental considerations suggest that STOVE performs
optimally given the chaoticity of the billiards environment. We come to relevant
conclusions concerning the general applicability of the billiards environment as a
benchmark for physics models. A discussion of the effect of observation noise on
the supervised baseline is followed by a qualitative illustration of the stability of
the predictions, STOVE’s performance on scenarios with different object visuals, an
ablation study, and some considerations with respect to STOVE’s scaling behaviour.
The environments are fully introduced in the following section.

5.1 Introducing the Environments2

Figure 5.1 shows frames of videos from all environments.

Billiards Environment. The billiards environment consists of multiple objects moving
on a bounded, quadratic, (two-dimensional) plane. The objects are circular and,
going with the metaphor of billiards, will be referred to as balls. Unless a collision
occurs, balls move in straight lines with constant velocities, since no frictional forces
are considered. If the distance between two balls is less than their combined radius,
elastic collisions occur, preserving the total momentum and kinetic energy of the
system. The boundaries of the canvas are modelled as walls. If the outer radius

1The repository at github.com/jlko/STOVE contains animated versions of the static sequences
displayed here. The reader is strongly encouraged to watch them, as they much better convey a visual
impression of STOVE’s qualitative performance.

2Our implementation of the environments is released as part of the official STOVE repository and
builds on the original code by Sutskever et al. (2009). I want to thank my co-authors Karl Stelzner,
Claas Voelcker, and Marcel Hussing for contributing valuable code to the environment’s codebase.
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Figure 5.1.: Exemplary future frame predictions from STOVE for the relevant environments.
The first two rows show consecutive frames from the billiards environment,
followed by frames from the gravity simulations, and the action-conditioned
setting. To save space, the above frames show 1 out of every 3 frames in
the simulation and 8 of the above frames correspond to 1 second of video.
See github.com/jlko/STOVE for animated versions. For the action-conditioned
settings, we artificially invert the pixel values, whenever STOVE predicts a
reward of −1.

of a ball reaches one those boundaries, it is reflected without losing momentum or
energy. This can be seen as an elastic collision where the boundary is modelled with
infinite mass and zero velocity. Objects are initialised with random positions drawn
from a uniform distribution over the area of the billiards table. If object positions
should overlap, the initialisation is invalid, and new positions are drawn until a
valid initialisation is produced. Object velocity components are initialised as draws
from a zero-mean normal distribution. Velocities are normalised so that the total
kinetic energy of the system is constant across all sequences, as is standard in the
literature, see e. g. Sutskever et al. (2009). Average velocities are such that the entire
length of the canvas may be crossed in about 20 simulation steps. Unless otherwise
mentioned, the billiards environment is rendered at a resolution of 32 by 32 pixels,
with ball radii of about 8 pixels. While this environment can be seen as the top view
of a quadratic billiards table without pockets and friction, it really does not bear any
resemblance to the game of billiards. This may be why it is sometimes also given the
more descriptive, albeit somewhat silly, name of bouncing balls.

Gravity Environment. The gravity environment consists of multiple, gravitationally
interacting objects on a (two-dimensional) plane. Objects are modelled as point
masses but rendered with finite and circular size. They interact gravitationally, i. e.
any pair of objects is subject to a force proportional to the inverse square of their
distance and proportional to the product of their masses. No hard object-object
or object-wall collisions are modelled. Compared to the billiards environment,
reliably obtaining stable sequences of gravitationally interacting objects requires a
fairly large amount of additional modifications to the system. In line with Watters
et al. (2017), we apply a small additional parabolic force towards the centre to
prevent objects from drifting apart. The simulation is also transformed such that
the centre of mass of the system always corresponds to the centre of the frame to
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account for object configurations whose centre of mass drifts. As gravitational forces
diverge for object distances tending to zero, great accelerations may occur during
the simulation. These accelerations are too large to be stabilised using the parabolic
attraction towards the centre. We therefore additionally clip the gravitational force
to dampen the impact of such events. We allow objects to partially leave the frame.
However, sequences where objects fully leave the frame or occlude each other are
dropped from the data sets. The gravity environment is highly sensitive to the
initialisation of object positions and velocities. This complicates the search for
a broad range of parameters to which we can randomly and safely initialise the
system. After extensive experimentation, we opted for a random initialisation of
positions, avoiding points too close to the centre, the boundary of the frame, or to
other objects. Velocities are initialised as orthogonal to the object’s position vector
measured from the centre of the frame and corrupted by component-wise random
noise. This initialises the objects on a rotating path around the centre of the frame.
Unless otherwise mentioned, the gravity environment is rendered at a resolution of
50 by 50 pixels, with ball radii of about 7 pixels.

Action-Conditioned Environment. The billiards scenario is extended for application
to model-based control. One of the balls is now actively steered by the actions
of an agent; the others continue to move according to the physics of the billiards
environment. When one of the two passive balls collides with a ball controlled by the
agent, the active ball is simulated as having infinite mass and zero velocity, and their
collision is identical to that of a physical ball and a wall: The passive ball is elastically
reflected, leaving its absolute momentum and energy unchanged, while the active
ball’s state is unchanged. The agent may choose between 9 discrete actions: Moving
the ball in one of 4 cardinal directions (up, down, left, right), one of the 4 diagonals,
or not moving the ball at all. Excluding the non-action, the actions result in an
instantaneous movement of the active ball in that direction. Unlike a physical force,
the action does not additively modify previous velocity values. Instead, an action
sets the velocity of the active ball to a fixed value, resulting in a direct movement
of the ball in that direction for one timestep only. Therefore, the active ball does
not exhibit constant velocity motion. In other words, to move it across the screen
left-to-right, the “right” action has to be chosen not once but on each frame. This
scheme was chosen because it proved to be the most natural and easiest to play from
the perspective of a human player. All 8 movements are normalised to equal length.
A game is obtained by the construction of the following reward function: Negative
reward of −1 is given when the active ball collides with one of the passive balls. If no
collisions occur, a reward of 0 is returned. The goal of the game is therefore to steer
the active ball such that collisions with the passive balls are avoided. The size of the
movements are such that the active ball may cross the entire length of the canvas
with about 10 actions. Successful multi-step planning is needed to avoid collisions.
A random action selection policy is used to generate data for training STOVE in
this setting. At time t = 0, a random action a0 is chosen uniformly from the set of
available actions. At time t, action at = at−1 is chosen with probability 1− α, and
with probability α, a random action is chosen uniformly from the set of all actions.

The environments support a varying numbers of objects, as well as different masses
or sizes between objects of the same sequence. Unless otherwise mentioned, exper-
iments are performed with three identically sized, circular objects of equal mass.
The environment also offers the option to render objects from a set of prespecified
sprites. While the environment supports colour images, unless otherwise mentioned,
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greyscale-transformed images were used as input to the models. This results in
images, for which all balls are white, while the background is black. The balls
are rendered using a Gaussian kernel smoother for anti-aliasing, which results in
smooth-looking objects at low resolutions. Coloured images are usually for illus-
trative purposes only, although we do use colour input for the action-conditioned
scenario. While the laws governing the billiards and gravity environments are
straightforward to describe, their emulation using a function approximator, e. g. a
neural network, is not trivial, as the objects’ overall behaviour is highly non-linear
and chaotic.

5.2 Training Details
For all video modelling tasks, 1000 test and 300 training sequences with 100 frames
each are generated. A random subset of 8 frames is used to train STOVE via the
sequence ELBO, Eq. (4.11). Unless otherwise stated, STOVE was trained for a total
of 83 000 steps with a batch size of 256. We used the ADAM optimizer (Kingma and
Ba, 2015) with a learning rate schedule of 2× 10−3 exp(−4× 10−2 · step). STOVE
is implemented using the PyTorch library (Paszke et al., 2019). Training of a default
STOVE model on a single desktop machine with an AMD Ryzen 7 3800X processor
and a Nvidia Geforce RTX 2080 Ti converges in about 10 hours. See Appendix A.4
for an exhaustive list of hyperparameters and their settings.

5.3 Video and State Modelling
We compare the rollout performance of STOVE to relevant and recently published
baselines. As rollout, we define the prediction of future frames of video or object
states conditional on a sequence of observed images. Here, the models observe and
reconstruct 8 frames of video from the test set. Conditioned on those, a prediction
for the following 92 frames is made and compared to the ground truth. For models
which are able to extract object positions, we obtain a position prediction error as
the mean Euclidean distance between the predicted and the ground truth positions
averaged over all objects. For models able to render future video frames, we obtain
a prediction error as the mean squared error between predicted and ground truth
pixel values.

Introducing Baselines. We choose VRNN (Chung et al., 2015), DDPAE (Hsieh et al.,
2018), and SQAIR (Kosiorek et al., 2018), which have been introduced in Sec-
tions 2.3 and 3.3, as baselines against which we compare.3 VRNNs are an established
baseline for unstructured non-linear state space models and present the non-AIR
baseline in the experiments. SQAIR and DDPAE are obvious contenders because, like
us, they extend AIR to videos. To allow for a fair comparison to STOVE, we fix the
number of objects in both DDPAE and SQAIR to the correct amount. A supervised
baseline is constructed by isolating STOVE’s dynamics core and directly using ground
truth object positions and velocities as input. As this baseline does not suffer from
any visual uncertainties, it serves as an upper bound to the performance obtainable
with the dynamics core. Additionally, a linear ablation is constructed by using STOVE
to infer object states from the first 8 observable frames of video. For future frame and

3The experiments with SQAIR have been performed by Karl Stelzner.
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Real STOVE SQAIR SupervisedSTOVE SQAIRSupervised Real

Figure 5.2.: Visualisation of object positions from the real environment and predictions
made by STOVE, SQAIR, and the supervised baseline for the billiards and
gravity environments after the first 8 frames were given. STOVE achieves
realistic behaviour, outperforms the unsupervised models, and approaches the
quality of the supervised baseline, despite being fully unsupervised. For full
effect, the reader is encouraged to watch animated versions of the sequences at
github.com/jlko/STOVE. Objects coloured for illustrative purposes only. Figure
and caption first produced for Kossen et al. (2020).

state prediction, the dynamics core is substituted by a linear model which fixes the
velocity of each object to the last observed values, resulting in straight trajectories.
In the billiards environment, this model will predict sensible behaviour until the first
collision occurs or an object reaches a frame boundary. For the linear baseline, we
clip maximum positions to the dimensions of the canvas. This results in pixel and
position error curves, which serve as lower bounds that should be outperformed by
any well-functioning dynamics model. A similar linear baseline has been used by
Battaglia et al. (2016). As VRNNs have no inherent notion of objects, one cannot
directly obtain object positions from them. Therefore, for VRNN, we only compare
the pixel MSE. As DDPAE and SQAIR are both object-aware AIR-derived models, we
can obtain pixel and position errors. The supervised baseline directly operates on
states, and therefore only position errors can be specified. As the linear ablation is a
modification of STOVE, pixel and position errors may be calculated. For additional
details on the training and hyperparameter selection of the baselines, the reader is
referred to Appendix B.

Result Summary. The qualitative behaviour of the rollouts is visualised in Fig. 5.2.
Figure 5.3 displays the rollout errors for STOVE in comparison to the baselines.
Table 5.1 underlines the results with concrete numbers. STOVE is able to clearly
improve upon the baselines against which we compare. In addition, STOVE performs
strikingly close to the supervised model.

Reconstructions. STOVE, DDPAE, SQAIR, and VRNN all reconstruct the observed
frames with similarly high accuracy. The same holds for the positions inferred by
STOVE, DDPAE, and SQAIR. STOVE’s average accuracy for inferred positions is at
1/3 pixel accuracy. As previously, the accuracy of the object positions obtained by
SuPAIR (Stelzner et al., 2019) or AIR (Eslami et al., 2016) has not been reported, this
result in itself is an encouraging addition to the literature. However, as no notable
differences between STOVE and the baselines may be found in the reconstruction
tasks, our focus on a predictive evaluation of the models is further motivated. Note
that the position error for the observed frames for the supervised baseline is 0, as
the model directly observes object positions and velocities.

Predictions. In the predictive regime, Fig. 5.3 clearly shows that STOVE is able
to improve upon previous approaches. No model is significantly outperformed by
the linear baseline. Notably, in the billiards scenario STOVE’s performance comes
close to that of the upper bound given by the supervised baseline. The gravity task
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Figure 5.3.: Mean test set performance of STOVE compared to baselines. STOVE clearly
outperforms all unsupervised baselines and is almost indistinguishable from the
supervised dynamics model on the billiards task. (Top) Mean squared errors
over all pixels in the video prediction setting (the lower, the better). (Bottom)
Mean Euclidean distances between predicted and true positions (the lower, the
better). All position and pixel values are in [0, 1]. In all experiments, the first
eight frames are given, all remaining frames are then conditionally generated.
The shading indicates the min and max values over multiple training runs with
identical hyperparameters. Figure and caption first produced for Kossen et al.
(2020).

seems easier, because even though the objects move at similar speeds, prediction
errors grow slower for STOVE and the supervised baseline. Here, larger differences
between STOVE and the supervised baseline are observable, suggesting that the
gravity task may further benefit from the precise inference of ground truth states.

Qualitative Discussion. A visual inspection of the produced animated rollouts con-
firms STOVE’s improvements over the baselines.4 DDPAE, SQAIR, and VRNN are
able to model freely drifting objects and objects colliding with walls. However, they
are unable to correctly and consistently account for interactions between objects.
The videos they predict quickly show unstable and unphysical behaviour. Among
the baselines, DDPAE performs best and sometimes produces interactions between
objects which resemble realistic collisions. In contrast, STOVE’s predictions look
strikingly similar to the true underlying simulation. Indeed, preliminary experiments
have shown that the quality of STOVE’s rollouts is such that humans struggle to
consistently discriminate between STOVE’s predictions and simulations from the
environment. STOVE is able to uphold this prediction quality for a large number of
timesteps. We tested this for up to 100 000 prediction steps in the billiards environ-
ment. This already hints at STOVE’s capability of correctly preserving the kinetic
energy in the billiards environment, as discussed in Section 5.5.

Additional Observations. It seems worth discussing some general observations con-
cerning the error curves. All models exhibit similarly shaped error curves, resembling
logistic growth. Errors for the fully observed initial frames are low. With the onset of

4We invite the reader to watch the animated rollouts in the repository at github.com/jlko/STOVE.
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Table 5.1.: Predictive performance of our approach, the baselines, and ablations (the lower,
the better, best unsupervised values are bold). STOVE outperforms all unsuper-
vised baselines and is almost indistinguishable from the supervised model on
the billiards task. The values are computed by summing the prediction errors
presented in Fig. 5.3 in the time interval t ∈ [9, 18], i. e. the first 10 predicted
timesteps. In parentheses, standard deviations across multiple training runs are
given. The ablations are further discussed in Section 5.10. Table and caption first
produced for Kossen et al. (2020).

Billiards (pixels) Billiards (positions) Gravity (pixels) Gravity (positions)

STOVE (ours) 0.240(14) 0.418(20) 0.040(3) 0.142(7)
VRNN 0.526(14) – 0.055(12) –
SQAIR 0.591 0.804 0.070 0.194
DDPAE 0.405 0.482 0.120 0.298
Linear 0.844(5) 1.348(15) 0.196(2) 0.493(4)
Supervised – 0.232(37) – 0.013(2)
Abl: Double Dynamics 0.262 0.458 0.042 0.154
Abl: No Velocity 0.272 0.460 0.053 0.174
Abl: No Latent 0.338 0.050 0.089 0.235

prediction, the error rises until a maximum value is reached. This plateau must be
reached, as the environments are inherently chaotic and accurate prediction over
long time periods is impossible, as further discussed in Section 5.7. The maximum
value for the pixel errors is due to the boundedness of pixel values, while the maxi-
mum value of the position error can be explained by the bounds on the allowed or
practically observed object positions in the billiards and gravity environment. When
this plateau is reached, none of the predictions contain any more useful information
with respect to the true positions of the objects. For a reader unacquainted with
the problem at hand, the differences between models based on the position error
curves may look unremarkable. However, a visual inspection of the animated rollout
graphics clearly shows substantial differences between the models, as discussed
above. Section 5.5 therefore proposes an additional measure of performance to
account for STOVE’s ability to predict visually convincing rollouts over long periods
of time. Section 5.7 then discusses the chaoticity of the billiards environment as
a factor for the curve shapes and the implications this has for the environment’s
popular application as a benchmark for machine learning models.

Additionally, peculiarities for the different models may be revealed from the error
curves. For example, the pixel error curve for DDPAE reaches a higher plateau
compared to the other models. A simple explanation can be given: DDPAE tends to
increase the object sizes during rollouts in both scenarios, which leads to a larger
pixel error when the highly incorrect object predictions are compared to a black
background. Furthermore, SQAIR and VRNN display a decrease of the long-term
pixel error, which is most pronounced for the gravitational data. This decrease is due
to a tendency of the models to merge objects, i. e. to decrease the total object count
or predict completely overlapping objects. This leads to less area where incorrect
object predictions are compared to the background and therefore to lower pixel
error values. Without knowledge of the peculiarities of the environment and the
pixel error, one may erroneously conclude that VRNN and SQAIR outperform DDPAE,
when actually, DDPAE’s non-merging behaviour should be seen as preferable and
more realistic, even though it leads to higher pixel errors in the chaotic regime. The
position error for the linear baseline converges to a higher plateau than all other
models. Its predictions quickly stick to the boundary, which results in higher average
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Figure 5.4.: Visualisation of action-conditioned video prediction in STOVE. STOVE correctly
and precisely predicts the effect of the actions corresponding to movements
in cardinal directions on the active ball, displayed in red. Actions are repeat-
edly applied on each frame. Images are rendered by STOVE and coloured for
illustrative purposes.

distances to the uniformly distributed ground truth positions than for the other
models.

5.4 Action-Conditioned Prediction
The action-conditioned variant of STOVE, introduced in Section 4.4, is applied to the
avoidance game in the billiards environment. Given a list of actions, STOVE predicts
future rewards of the environment in addition to the object states. STOVE therefore
learns a full simulation of the environment, which is combined with a planning
algorithm to obtain a policy. In Kossen et al. (2020), we show that competitive
and data-efficient performance is obtained when using STOVE’s action-conditioned
reward prediction with MCTS (Coulom, 2006) for planning in comparison to state-
of-the-art model-free reinforcement learning baselines. MCTS with STOVE achieves
a performance of about 1 collision per 100 frames of video.5 We will give a detailed
discussion of the predictive performance of STOVE when conditioned on actions. For
the action-conditioned experiments, the environment was used in full RGB colour
mode, where each ball is given a different colour, and appearance information is
appended to the object states for dynamics modelling, as described in Section 4.4.
However, the SPNs continue to model greyscale images for simplicity.

The first experiment demonstrates that STOVE successfully learns the effect of
actions on the active ball. The model is initialised with 4 frames, null action, and the
active ball placed in the centre of the frame. Then follows a sequence of repeating
a single action 10 times. The passive balls were initialised such that collisions
between the active ball and one of the passive balls were prevented. Conditioning
STOVE’s prediction on a sequence of a single action, repeated over time, yields a
precise movement of the active ball in that direction, while the passive balls move
unaffected. For the four cardinal directions, this is displayed in Fig. 5.4. Figure 5.5
(left) demonstrates this for all 9 available actions. The precision with which the
movements are predicted is high, especially given the low resolution of the input

5A detailed discussion of this application in the context of reinforcement learning is out of scope
for this thesis, as the corresponding experiment in the publication has mainly been performed by my
co-authors, see Kossen et al. (2020) for details.
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Figure 5.5.: Further visualisation of STOVE conditioned on actions. (Left) STOVE precisely
predicts the effects of all 9 actions on the movement of the controlled ball at
sub-pixel resolution. Actions are applied for 10 steps, the first of which is not
displayed, such that the effect of the null action is clearly visible. 9 separate
experiments were performed and combined in a single plot. The movement of
the controlled ball as a result of the action sequences is both rendered as pixels
(yellow, normalised sum of images displayed) as well as plotted in terms of the
predicted positions (red). The passive balls are not displayed and did not affect
the movement of the active ball. (Centre) Per-object prediction errors for the
action-conditioned STOVE on the test set with random actions. The position
error for the controlled ball on the test set is far lower than the error for the
passive balls, suggesting that STOVE fully exploits the available information.
(Right) The total position error averaged over all objects for action-conditioned
STOVE (red-green-blue) is similar to STOVE in the default billiards scenario
(dashed-grey). Additional information about the experiments may be found in
the text.

images. Figure 5.5 (centre) demonstrates that predicting the movement of the active
ball can be achieved with much lower error than the prediction of the passive balls.
This is unsurprising, since, given a list of actions, the movement of the active ball
is largely deterministic. That is, it is deterministic until its trajectory is affected by
a passive ball, whose position is chaotically determined. We speculate that such
collisions mostly account for the prediction errors of the active ball.

Figure 5.5 (right) shows that the performance of STOVE in the action-conditioned
scenario is similar to the performance of STOVE in the default billiards scenario. This
is surprising. As presented in Chapter 4, in STOVE, a graph neural network models
the transition function. By design, this graph neural network uses the same function
to predict the state transition for all objects. This is an intuitive approach for physics
simulations where, usually, all objects follows the same laws of physics, i. e. in the
billiards and gravity environments the implicit assumption holds that the prediction
function is identical for each object. Differences between the objects which affect
the transition function, such as different masses, are usually assumed to be small
and reflected in the latent state. However, in the action-conditioned environment,
these assumptions of largely equal dynamics are violated: The controlled ball moves
entirely dependent on actions, while the passive balls continue to bounce around.
Excitingly, the dynamics function continues to predict correct behaviour for all of
the balls in the simulation. The single function of the GNN is therefore able to
approximate multiple entirely different dynamics. Essentially, the dynamics model
learns to map characteristics of the specific object’s latent state to indicator functions
in the GNN, which then determine the dynamics. Note that this behaviour is learned
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Figure 5.6.: Comparison of kinetic energies in the rollouts predicted by the models, com-
puted based on position differences between successive states. Only STOVE’s
predictions reflect the conservation of total kinetic energy in the billiards data
set. This is a quantitive measure of the convincing physical behaviour in the
rollout videos. (Left) All models recover noisy but roughly correct estimates of
the system’s energy. (Dashed vertical line demarcates the end of observations.)
(Centre) STOVE continues to predict trajectories with constant energy, while
the energies of SQAIR and DDPAE quickly diverge. (Right) STOVE manages
to predict these constant energy rollouts for possibly infinite amounts of time
– displayed here are 100 000 frames. (Left & Centre) Averages are over 300
trajectories from the test set. Shaded regions indicate one standard deviation.
(Right) Rolling average over a single, extremely long-term run. Figure and
caption first produced for Kossen et al. (2020).

and not pre-specified. Such behaviour is only possible if the latent space allows for
reliable differentiation between the object types, e. g. by including object masses,
appearance information, or other distinctive properties. As we append a visual
representation to each object state, here, the GNN can differentiate between passive
and active objects from the input representations. However, preliminary experiments
have shown that even without such appearance information, i. e. when objects are
not discernable a priori, the model learns to predict adequately different dynamics
for active and passive objects. This is only possible if the GNN learns to assign
different signatures in the unstructured latent zot, latent to different object dynamics.
However, model performance does deteriorate in this scenario, such that we chose
to append appearance information in the default case.

In the context of physics simulations, the action-conditioned environment may seem
a bit contrived and without real-world relevance. However, the application of graph
neural networks as transition functions in broader contexts such as reinforcement
learning or robotics is interesting. There, it is never the case that all objects follow
the same dynamical laws: The paddles in Pong behave differently than the ball, and
Mario’s interaction with Princess Peach is different from Donkey Kong’s. Our simple
extension of the billiards environment to action-conditioning can be seen as a first
proof of concept that relational dynamics models continue to function well, even if
implicit assumptions are broken. This further motivates their use outside of physics
modelling domains, and Section 6.1 contains a further discussion of possible future
directions of research implied by theses results.
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5.5 Energy Conservation
STOVE predicts visually convincing rollouts for extremely long timeframes, while
the predictions from DDPAE, SQAIR, and VRNN quickly show unrealistic behaviour
such as teleporting, decelerating, wobbling, or overlapping balls. For the billiards
scenario, a reliable quantification of this observation is demonstrated. Here, the
energy of the system should be conserved, as no friction is modelled and collisions
are fully elastic. Because no potential energies are present, the total energy E is
equal to the kinetic energy K and

E = K =
∑
o

1

2
mo(vo)2 , (5.1)

where mo and vo are the object masses and velocities. As DDPAE and SQAIR do not
explicitly model the object velocities, the velocity is approximated for all models by
the differences in positions between consecutive frames zot, pos − zot−1, pos = vo ·∆t.

STOVE correctly conserves the total kinetic energy, while the other models exhibit
divergent behaviour after only few predicted frames. Note that, while the energy
should be strictly conserved for any given sequence, STOVE achieves this conser-
vation on average – rolling average over the sequence or average over different
sequences. This is displayed in Fig. 5.6. STOVE’s qualitative superiority in terms
of visual rollout quality is clearly reflected by its ability to preserve the average
kinetic energy of the system. We therefore find energy conservation to be a quantity
well-reflective of the qualitative model behaviour. We have experimentally verified
the constancy of STOVE’s energy predictions for up to 100 000 frames, although
we see no reason why this behaviour should not continue indefinitely given the
Markovian properties of STOVE’s underlying graphical model. Note that we have no
measures in place to directly optimise for a conservation of energy. This is further
discussed in Section 5.6.

During the initial iterations of training, the rollout position error decreases quickly
and reliably. Figure 5.7 shows that the convergence to the correct energy value takes
much longer, converging only in the late stages of training. This is in line with the
observation that STOVE often predicts decelerating objects in the initial phase of
training, leading to a near standstill of the dynamics.

The above result contains a caveat. As is common in the literature, but not often
stated, the randomly initialised velocities of the objects are normalised such that
the total kinetic energy of the system is constant over all sequences.6 Therefore, in
the above experiments, STOVE does not need to actually observe the velocities of
any given sequence with high accuracy, as long as it internalises the total kinetic
energy shared by all sequences in the test and training set. Still, regressing to the
correct energy is impressive and certainly preferable to the catastrophic breakdown
of other methods. As far as we are aware, this constant energy choice has never been
explicitly discussed. This is partially explained by the fact that learning generative
sequence models which exhibit energy conservation has likewise not been a focus
in the video modelling community. A hint that this regression to the mean does
indeed occur, is given by the fact that in Fig. 5.6, the standard deviation over the
energies is higher for observed values than for future predictions. The only sensible

6See e. g. code for simulations of Sutskever et al. (2009).
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Figure 5.7.: Emergence of energy conservation during the training of STOVE for a single,
reproducible run. Mean energies slowly converge to the correct value indicated
by the grey dashed line. (Left) Mean energies over the 300 test set sequences
of lengths 100 during training. As the mean energies converge, their standard
deviations over the different sequences likewise decrease, converging to a low
value. (Displayed in dashed blue, y-axis on the right.) (Right) Quantitative
behaviour of the rollout energy over the number of predicted frames. During the
inital stages of training (blue), the predicted energies quickly decrease over the
rollout duration, corresponding to a near stand still of the objects, as if frictional
forces were at work. This behaviour is remedied later in training (yellow) when
energies are correctly conserved. Per curve, a mean was computed over the 300
sequences in the test set. The colourbar maps each curve to a training step.

explanation for this is that these prediction energies are actually not conditioned on
the observed sequence at all and instead stem from internalised behaviour learned
over all sequences. Therefore, due to the peculiarities of the model and data, we
predict the energy of the system with lower variance than we can observe.

This then leaves the question of whether STOVE is able to observe and predict
sequences of varying energies when (a) trained on a set of single energy sequences,
as is default, or (b) trained on a set of sequences with energies sampled uniformly in
a reasonable interval. Note that the physics of the environment remain unchanged
such that the kinetic energy remains constant throughout a sequence. Questions (a)
and (b) are answered in Fig. 5.8 (left and right). If STOVE is trained on constant
energy data (left), it is able to infer new energies from observed frames, albeit with
some negative bias and decent amount of noise at high energies. However, stable
forward predictions of these energies are not possible, and the predicted energies
quickly (after around 10 frames) diverge to the training set value. This value is then
stably propagated without any regard for the input sequence. This behaviour further
supports the hypothesis that STOVE learns and internalises a global kinetic energy.
If STOVE is trained on a diverse set of energies, said energies can be observed more
accurately and precisely. Prediction also improves, and after 10 predicted frames
only small divergences from the input energies are visible. However, after predicting
100 frames, the model seems to again converge to some non-zero energy regardless
of the input energy. The conservation of arbitrary energies cannot be achieved and
is left for future work. Nevertheless, the improved behaviour for the diverse set of
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Figure 5.8.: Mean kinetic energy observed/predicted by STOVE over true energy of the
sequences. (All) The dashed diagonal line represents perfect predictive be-
haviour. The observed values refer to energies obtained as the mean energy
value over the six initially observed frames. The short (long) timeframe refers
to the mean energy over the first 10 (100) frames of prediction. 300 points per
label are displayed. (Left) STOVE is trained on sequences of constant kinetic
energy. This is the default procedure for other experiments of this thesis and
in the literature. As can be seen from the blue scatter points, STOVE predicts
sequences which comply with energy conservation, when the sequence energy
exactly equals the single energy observed during training. All 300 points are
concentrated at (0.01, 0.01). When STOVE is applied to sequences of different
energies – but trained on sequences with a single energy – it manages to infer
these energies from observed frames fairly well, with inaccuracies compounding
at larger energies (red). In conditional prediction, however, the mean predicted
energies quickly diverge to the energy value observed in the training set (orange
and green scatters). (Right) STOVE is now trained on sequences of varying
energies. Compared to the constant energy training, energy observation and
prediction improves drastically. Energy observation (red) does not exhibit a
strong bias at larger energies anymore. The short-term predictions (orange) no
longer immediately regress towards a specific value. However, after 100 frames,
the predicted energies still regress to a wrong value (green). Figure and caption
first produced for Kossen et al. (2020).

training energies is promising.

5.6 Noisy Supervision
This section investigates the influence of observation noise on the prediction error
and energy conservation capabilities on the billiards data set. The initial motivation
for this experiment was the inability to obtain supervised baselines which conserve
the kinetic energy of the rollouts. As previously introduced, the supervised model is
obtained by isolating SuPAIR’s dynamics model and inputting ground truth object
positions and velocities. In STOVE, SuPAIR passes object positions and velocities to
the dynamics model. It is therefore initially unclear why STOVE’s dynamics model
should achieve energy conservation while the dynamics model on its own, referred
to as the supervised baseline, does not. A difference between the two is the fact
that, while the supervised baseline has access to the floating point precise ground
truth positions from the simulation, STOVE observes positions uncertainly from
low-resolution images. We therefore investigate the hypothesis that adding noise to
the ground truth data makes the supervised baseline behave more similar to STOVE.
Normally distributed noise with zero mean and standard deviations equal to STOVE’s
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Figure 5.9.: Mean predicted energies as training progresses for the supervised dynamics
prediction of six different runs. For the three blue runs, no noise was added
to the ground truth data. For the three orange runs, noise the size of STOVE’s
observation uncertainty has been added. Adding noise seems to benefit the
decrease of the standard deviation of the mean energy predictions. Energy
conservation for the supervised baseline could not be achieved. Rolling means
and standard deviations over the training steps are plotted alongside in black
and grey. True energy is shown with the dashed horizontal lines.

observational uncertainty is applied to the training set.

Figure 5.9 visualises the effect of adding noise to the input data on the mean
predicted energies during rollout as training progresses. Without noise, the mean
predicted energies of the supervised model are far from the true value, which is
again constant over all sequences. Additionally, a large variance over the mean
predicted energies between training steps is observed (dashed grey lines). For the
supervised models trained with noise, this variance decreases and additionally, the
mean predicted energies edge closer to the real value. The model trained with noise
does indeed appear to behave closer to STOVE than the model trained without noise.
Experiments were repeated three times to highlight differences between runs due to
random model initialisation. Again, variances between models are higher for the
models trained without noise than for those trained with. An explanation for the
difference in variance is suggested as follows: For a chaotic environment such as
billiards, see Section 5.7, exact prediction over long periods is impossible for any
model. However, a model which observes the uncorrupted object states may still try
to predict future states exactly rather than capture general environment behaviour,
as this is possible to some extent for shorter timeframes. However, over the long
rollouts presented here, small deviations in the predictions add up exponentially,
creating predictions with large variations in object states and therefore energies.
As noise is added to the training data, it becomes harder for the model to predict
future states exactly. This may be beneficial to the regression to the mean energy
effect observed. In the face of uncertain data, the model quickly regresses to its
internalised mean dynamics. This suggests that adding noise may indeed benefit the
reliable conservation of a single mean energy.

Figure 5.10 (left) corroborates this result. It displays the progression of the average
predicted energies over the number of predicted rollout frames for the models
trained with (orange) and without (blue) noise from Fig. 5.9. The models trained
without noise display a tendency of slowly decreasing energies during rollout. This
leads to a visual impression similar to frictional forces acting on the objects. As can
be seen from Fig. 5.7, similar behaviour is observed during the initial training phases
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Figure 5.10.: (Left) Progression of predicted energies over rollout frames. The supervised
models without noisy data (blue) display a slow but steady decrease in the
predicted energies. Adding noise (orange) increases the average predicted
energies, which edge closer to the true value. Energies now decrease sharply
once at the beginning of prediction, and then they stay constant. The dashed
grey line indicates the true, constant energy of all sequences in the data.
Standard deviations are given over the 300 runs in the test set. Eight runs are
displayed, a superset of those in Fig. 5.9. (Right) Average train and test set
position error for supervised models trained without (blue) and with (orange)
noise. Without noise, train and test set errors are low. With noise, train errors
(measured against noisy training set) are higher due to the noisy observations.
Test errors (not corrupted with noise) are considerably lower than training set
errors. This suggests that the model is able to extrapolate from noisy data. Test
errors do, however, not quite reach the level of the model without noise. Error
bars indicate the min/max values over four runs each.

of STOVE. The supervised model can however not escape this undesirable behaviour
as training progresses. Adding noise to the training data noticeably affects the shape
of this curve. Instead of the slow, steady decrease of the predicted energies, a sharp
decrease in energy is observed in the transition from reconstruction to prediction,
after which the mean predicted energies stay constant. This suggests that adding
noise does indeed benefit a conservation of energy during rollout. That being said,
the supervised models predict energies lower than the true energy in both scenarios.
Additionally, the initial sharp energy decrease for the model trained with noise is
noticeable in animations and appears unrealistic. The energies predicted by the
models augmented with noise are, however, closer to the true energies compared
to the noiseless variant. Figure 5.10 (right) shows a comparison of the position
prediction errors for the two supervised baselines with and without noise on the
training and test sets. As was to be expected, the model without noisy training data
outperforms its noisy equivalent on the position error. However, if the model trained
with noise is benchmarked on the uncorrupted test data, its prediction error is much
lower than the training error against the noisy data. This suggests that, in addition
to producing rollouts with energetic properties closer to that of STOVE, this model
successfully learns to generalise model behaviour beyond the noise in the training
set, since the prediction error significantly drops when the model is applied to data
without noise.

Some experimental steps towards closing the gap between the behaviour differences
of the supervised dynamics model and the unsupervised STOVE have been taken.
Often in the literature, a suspicion towards the beneficial effects of observation noise
on training models from visual data is voiced, see e. g. in Watters et al. (2017).
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This assumption is rarely tested. The strict compositionality of STOVE allowed us
to realize specific experiments testing the effects of observation noise on model
behaviour. Adding noise to the training data does indeed seem to benefit the
prediction of a stable mean energy over prolonged rollout periods. However, we
were unable to achieve a mean predicted energy equal the true energy of the data in
the supervised setting. Future work could alleviate this difference by further tuning
the artificial noise, the training procedure, or model hyperparameters.

5.7 Chaos in the Billiards Environment
The billiard environment is chaotic. This implies that, on average, states which are
initially infinitesimally close show exponentially diverging trajectories. The same
holds for the gravity environment. Yet, the billiards environment is more commonly
used in the literature, and stable simulations may be obtained without much effort.
For the purposes of brevity, we therefore restrict ourselves to a discussion of the
billiards environment. The chaoticness of the environments entails that it is virtually
impossible to learn a model which perfectly emulates training set trajectories, be-
cause even noise with magnitudes as small as the limits of floating-point precision
will lead to an exponential divergence of states. Here, this exponential growth is,
of course, limited by the boundedness of the simulation due to the hard collisions
with the walls of the environment. This section studies the effects of noise on the
chaotic environment, i. e. the data generating program itself, and not directly the
performance of any model, such as STOVE, trying to emulate it. The insights ob-
tained here have, as far as we are aware, not been discussed in the machine learning
community so far. They have implications on the use of the billiards environment as
a benchmark for learning physics simulators.

Perfect Simulator with Observation Noise. The main result of this investigation is
obtained by answering the following question: How does the rollout error behave,
assuming the model’s dynamics prediction has learned a perfect simulation, but
its initial observation is subject to noise? To answer this question, we investigate
the effect of artificial observational noise purely in simulation. We first create a
random reference trajectory from the simulation, remembering the initial state of
the environment. The environment is then reinitialised using the same initial state.
However, this time, the initial state is corrupted by adding normally distributed
noise, before rerunning the simulation from this minimally altered state. We then
compare the trajectories of the two curves and produce the familiar position error
rollout plots. This procedure is repeated to obtain summary statistics. The size of the
noise added is identical to the observation noise to which STOVE is subject to, i. e.
roughly 1/3 of a pixel. Surprising results are obtained and displayed in Fig. 5.11 (top
left). Alongside the error curve obtained from the experiment, a reference curve for
STOVE’s rollout error is plotted. The two curves look almost identical. STOVE’s error
curves are indiscernible from those of a perfect model of the environment corrupted
by appropriately sized initial observation noise. As is discussed further below, this
does not imply that STOVE’s dynamics model is perfect, only that it is good enough
to not drastically affect the error curves. Reductions of the observation noise may
only be achieved by increasing the pixel resolution of the data, assuming that SuPAIR
as STOVE’s image model performs optimally. As the observational error is already in
the subpixel regime, we think it fair to judge this assumption to be approximately
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Figure 5.11.: The environment’s chaoticness is a direct cause of the familiar shape of the
position error curve. This is revealed by investigating the effect of artificial
noise on the trajectories generated by the environment. (Top left) A perfect
simulation of the environment with added initial noise results in a mean
error curve strikingly similar to that of STOVE. (Top right) The familiar shape
of the error curve is obtained only by averaging, and individual trajectories
(displayed with transparency) are heavily influenced by collisions. (Centre left)
Decreasing the initial observation errors only shifts the time until visible chaos.
(Centre right) A logarithmic plot reveals that the errors do in fact accumulate
in exponential fashion. The initial observation noise merely determines the
initial position error, after which the rate of exponential growth is inherent
to the simulation. (Centre and bottom) There are two types of noise which
may be applied to the simulation: (a) noise applied once, corresponding to
the noise of an initial observation, conditioned on which predictions are made,
and (b) predictive noise applied continuously at each timestep, corresponding
to the errors of the dynamics model. Whichever noise is larger dominates the
shape of the error curve, succinctly described by the time until visible chaos. If
the observation error dominates the dynamics error, the performance of the
dynamics prediction cannot be assessed from the position error curve. The
curves are averaged over 300/100/10 individual sequences for the curves in the
top/centre/bottom. Description is displayed here in abbreviated form. See text
for a full discussion of all figures displayed. Legend in centre right plot indicates
the standard deviation of the applied zero-mean Gaussian noise. Colours for
centre and bottom right plot are consistent with the legend. Dashed grey line
in centre left plot indicates the threshold used to estimate the time until visible
chaos for the bottom plots.
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true. In other words, at the given resolution, the billiards environment may be
considered solved optimally by STOVE with respect to the rollout error, simply due
to the lower limit on the observation noise and the chaoticity of the environment.
The standard deviation displayed corresponds to the standard deviation between the
individual error curves over 300 sequences. This standard deviation is fairly large, as
the process of error accumulation in the individual sequences is highly stochastic
and dependent on when exactly collisions take place. This is illustrated by Fig. 5.11
(top right), which displays the progression of individual error curves alongside the
mean value. The impact of individual collisions on the error is clearly visible, and
even though the initial observational error is small, individual trajectories diverge
quickly and result in entirely different error curves. The familiar shape of the error
curve emerges only by mean aggregation. Note that in previous rollout plots, the
standard deviation between the average rollout errors over different training runs
were displayed.

Decreasing the Observation Noise. One could argue, that a simple increase in resolu-
tion should alleviate the problem, as it allows for higher resolution position inference
which in turn allows for lower error curves. The solid lines in Fig. 5.11 (centre left,
matching legend on centre right) show the error curves which emerge for different
levels of the simulated observation noise. Between each solid line displayed in
Fig. 5.11 (centre left), the initial noise is decreased 100-fold. This decrease can be
considered extreme, as a similarly sized increase in the video resolution would be
needed to achieve these lower observational errors in practice. Even initial noise
as low as 1× 10−13 leads to the same familiar chaotic error curve after about 500
prediction steps. Decreasing the level of noise merely shift the curves right, delaying
the time to the apparent chaotic explosion. This may be counterintuitive, as the
naïve expectation may be that error curves with smaller noise show slower error
growth, i. e. smaller gradients in the error curves. An explanation to this is given
by Fig. 5.11 (centre right). Indeed, in line with chaos theory, the average position
errors grow exponentially. That is, until the state divergence reaches the order of the
simulation boundary and errors converge to their maximum value. The gradient of
the log-transformed curves seems to be an intrinsic property of the simulation, and
the initial value of the error merely shifts its initial value, setting a baseline value
from which the exponential growth proceeds. Therefore, the size of the error of
observation merely affects the time until chaotic explosion becomes visible in the
linear plot (centre left). This confirms our observation in Fig. 5.3 that the shape of
the error curve is largely independent of model choice.

Adding Prediction Noise. Besides initial observational errors, additional prediction
errors can occur with each step. We visually observe these errors clearly, e. g. in the
rollouts of the unsupervised baselines. However, it is fair to assume that STOVE
also does not perfectly emulate the physics environment given noisy observations, as
was assumed for Fig. 5.11 (top left). We qualitatively validate this assumption in
Section 5.8. What is the effect of the errors of the dynamics simulation on the shape
of the error curves? As these errors are incurred anew at each prediction step, we call
them prediction errors in Fig. 5.11. Figure 5.11 (centre) shows with dashed lines the
error curves resulting from applying additional noise to the predicted states at each
step of the prediction. The size of this continuous noise was assumed to be the same
as the initial uncertainty for the sake of simplicity. Again, an initially surprising result
is obtained. The added continuous noise barely affects the time to visible chaos. We
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define the time until visible chaos by the time when the position error exceeds a
value of 0.1 as indicated by the dashed grey line in Fig. 5.11 (centre left). Adding
1× 10−3 dynamics noise to a process which incurred 1× 10−3 initial noise reduces
the time to visible chaos only by about 10 frames. These numbers do not change for
a process with noise levels of 1× 10−11. This is especially surprising as the dynamics
noise is applied each step along the simulation. Again, these observations may be
explained by the chaotic behaviour of the environment. As the states are already
exponentially diverging with a rate inherent to the environment, the additional noise
does not have a large impact on the time until visible chaos. In the logarithmic view
of the error curve, each additional dynamical prediction error simply contributes a
constant offset to the curve.

Observation versus Dynamics Noise. If the two noises, observation and dynam-
ics noise, have different magnitude, the time until visible chaos is dominated by
whichever noise is larger. Figure 5.11 (bottom left) compares a grid of combinations
of initial and dynamical noise with respect to their time to visible chaos. The above
assumption that the larger uncertainty dominates the time to chaos is validated by
the relation found in Fig. 5.11 (bottom right). This investigation of the environment
shows that a perfect simulation of the environment subject to no uncertainty in the
dynamics prediction but initial observation noise equal to that of STOVE results
in error curves indiscernible from those produced by STOVE. Unless the dynamics
error becomes significantly larger than the observational error, it does not influence
the shape of the error curve, as this is dominated by the larger of the two errors.
To improve the shape of the error curve, one must first decrease the observation
error.

Model Comparison in Chaotic Environments. More generally, the shape of the error
curves is largely a product of the environment characteristics. Without additional
metrics such as the conservation of energy, the dynamics prediction error is our only
proxy for assessing the quality of the generated trajectories. The pixel resolution
presents a lower bound to the observation error. As the observation and prediction
errors of the presented models likely do not differ over magnitudes, they all exhibit
similar error curves. We find this experimentally corroborated in Fig. 5.3, as errors
for the different unsupervised models look strikingly similar, even though the visual
appeal of their predictions differs drastically. For STOVE, good reconstructions can
be obtained after a few thousand iterations of training. However, for good future
state predictions, it is necessary to train up to 100 000 steps. In this respect, the above
results are somewhat disappointing, as we spent most of the training on improving
the prediction error, which will have little effect on the shape of the error curve.

We consider the above results useful to anyone reading about or performing experi-
ments on chaotic environments. Maybe the experiments presented herein inspire
future work to consider and investigate the effects that chaos has on prediction errors
and model comparison. The dominating behaviour of the observational error sug-
gests that supervised approaches may be preferred when testing dynamics prediction.
As supervised approaches do not suffer any observational noise, the error obtained
by them directly corresponds to the error of the dynamics prediction. However, many
models, such as SQAIR and VRNN, do not possess the strict compositional structure
of STOVE, and it is not possible to obtain a dynamics module, which can be trained
in isolation, from them. While STOVE’s performance may be considered optimal
under the above assumptions, this does not imply the obsolescence of the billiards
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Figure 5.12.: STOVE’s rollouts appear visually convincing to the naked eye. Here, a setup is
tested which should result in the balls moving infinitely up and down, without
drifting off to either side. The trajectories generated by STOVE do not meet this
requirement. (Left) Example trajectory generated by STOVE given the setup.
(Right) Rendered sequence of 64 frames corresponding to the trajectories on
the left. Images are displayed with a frame skip of 2.

task. Instead, the shortcomings of the position error strongly motivate the default
use of additional metrics, such as conservation of energy, to assess the performance
of physics prediction models applied to chaotic dynamical systems. Other quantities
of global or local conservation may be equally suited. Besides, such metrics are
more in line with long-term goals of the field: discovering general truths, such as
conservation laws, from the data, instead of solely solving prediction tasks.

5.8 Stability of Predictions
In the previous sections, we have established the insufficiencies of the rollout error
to fully assess the performance of the dynamics model. STOVE’s conservation of
the kinetic energy is a quantitative measure to demonstrate the stability of the
rollouts. However, STOVE exhibits this stability only on average. And even for
exact energy conservation, one can imagine a variety of scenarios which conserve
energy but do not conform to realistic physical behaviour. Therefore, we present
an additional qualitative investigation into the physical plausibility of the predicted
trajectories. We initialise STOVE with a simple constellation of object states, for
which the ideal behaviour is obvious: Three balls are placed equidistant (x-axis)
at equal height (y-axis) and with identical velocity of v = (vx, vy) = (0, vy), where
vy is chosen such that the total energy results in the familiar value. Given this
initial state, the behaviour of a perfect simulation are vertically bouncing balls that
do not drift horizontally and keep constant absolute vertical velocity. As is visible
from Fig. 5.12, STOVE does not meet this expectation. Here, STOVE predicts future
states zt+1 directly from the means of p(zt+1 | zt) without sampling. Of course,
STOVE’s predictions are subject to observation noise of the initial state as discussed
extensively before. However, the errors made are not attributable to observation
noise alone. If they were, the objects would continue on straight paths and otherwise
fully obey the physics of elastic collisions. From Fig. 5.12 (left) it is obvious that
this is not the case. Instead, the trajectories contain distortions. Especially collisions
with the walls seem to set the objects on wrong paths. Additionally, the velocity
constancy is violated, as the objects are on different heights after 64 frames, while
keeping trajectories relatively straight, see Fig. 5.12 (right). While this demonstrates
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Figure 5.13.: Reconstructions obtained from the SuPAIR image model of STOVE when applied
to more complex object shapes. Figure and caption first produced for Kossen
et al. (2020).

that STOVE does not perfectly emulate the physics behind billiards, the simulations
still look convincing to the human eye. The sequence displayed in Fig. 5.12 (right)
corresponds to 64 frames of video, which equate 8/3 seconds at 24 frames per second.
This is long enough for the errors to accumulate gradually such that they do not
appear jarring. This is reasonable, especially when one considers the deviations
in the trajectories in Fig. 5.12 (left) in relation to the low pixel resolution of the
images.

5.9 Flexibility of the Object Model
STOVE’s image model SuPAIR is capable of rendering images with higher complexity
than the white balls on black background employed throughout this thesis. While
the modelling of complex scenes is decidedly not the focus of this thesis, we perform
a proof of concept, or sanity check, showing STOVE’s application to scenes where
object shapes are drawn at random from a set of sprites. Multiple object shapes
may be present in any single sequence and shapes are kept constant throughout the
sequence. As can be seen in Fig. 5.13, STOVE does a decent job of reconstructing
this slightly more complex scene. The dynamics performance is not affected by this
change in appearance, as it is entirely oblivious to it. All objects were modelled
using a single SPN, as suggested by Stelzner et al. (2019). We refer to the original
publication (Stelzner et al., 2019) for a thorough investigation of the capabilities of
SuPAIR as a generative model of images, such as its performance when dealing with
noisy data or complex backgrounds.

5.10 Ablation Study
The subsequent basic ablations to the full model were performed to investigate the
assumptions of the STOVE architecture: STOVE was trained (a) without the reuse
of the dynamics networks, (b) without the inclusion of velocities in the latent, and
(c) without the inclusion of the unstructured latent. Ablation (a) was realised by
constructing two identical but separate (no weight sharing) dynamics networks, one
for inference of q(zt | zt−1) and one for generation of p(zt | zt−1) as is common in
other approaches. Figure 5.14 demonstrates the progression of the rollout position
error over training. Table 5.1 gives the total decrease in performance for the ablations.
The ablation study suggests that all investigated model choices are beneficial to
STOVE’s performance. As these experiments contain only single runs, this ablation
study should be regarded as preliminary, although the low variance observed for the
final position errors of repeated runs of identical STOVE configurations and the high
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Figure 5.14.: Displayed is the mean predicted position error over a rollout length of 8 frames
as training progresses for the billiards (left) and gravity (right) scenario for
STOVE and its ablations: STOVE trained (orange) without the reuse of the
dynamics networks, (green) without inclusion of velocities in the latent, and
(red) without the inclusion of the unstructured latent. All ablated components
are likely beneficial to STOVE’s performance. A similar figure and caption were
first produced for Kossen et al. (2020).

computational efforts of training multiple models somewhat justify this choice. We
now offer some thoughts regarding the results of the ablation study.

a) No Dynamics Reuse. Even if the performance of this approach should come close
to the original configuration, as is maybe the case for the gravity environment, a
single, reused dynamics network should be preferred as it reduces the number of
parameters of the model as well as the complexity of the model structure.

b) No Explicit Velocities. The final performance of STOVE without the explicit
inclusion of velocities is not far away from the full model, which implies that STOVE
learns to account for velocities in the unstructured latent space. Perfect velocity
information is valuable to future state prediction. However, the observational velocity
included in STOVE is not perfect, as discussed below, and the unstructured latent
space likely has to make up some of the difference even for the full STOVE model.
It is therefore not completely surprising that the unstructured latent can also learn
to account for all of the velocity. The authors of Karl et al. (2017a) also show the
successful recovery of velocities in a non-linear state space model, albeit for single
object scenarios. Training does, however, progress much slower without velocities,
justifying the choice of their inclusion.

c) No Unstructured Latent. STOVE’s performance suffers worst from the omission
of the unstructured latent space in the dynamics prediction. Strictly speaking,
object positions and velocities fully describe the state of the billiards and gravity
system. But, as discussed before in Chapter 4, the velocities obtained by STOVE
are mere approximations to the true velocity. Especially around collisions, these
values are imprecise, and additional latent information is necessary to predict the
next object state. For example, if an object collides perpendicularly with a wall in
the billiards environment, this is observed by STOVE as two snapshots at t0 and t1
from the simulation. Let the true component velocities be v0 before and v1 = −v0
after the collision. Assuming that the ball moves with constant velocity before the
collision, i. e. x−1 = x0 − v0∆t, STOVE’s estimate of v0 ∝ x0 − x−1 is accurate.
However, at t1, STOVE will not be able to accurately estimate the velocity v1 from
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Figure 5.15.: Scaling of STOVE to scenes with six objects. Shown are frames of rollout
predicted by STOVE. We display every third frame. Rollouts exhibit realis-
tic collisions at all times, although a decrease in the kinetic energy of the
system is noticeable. This is best seen in the animated version available at
github.com/jlko/STOVE.

the difference in positions because a collision occurred. A collision between t0 and
t1 will lead to x1 − x0 6= ∆t v1 because the collision abruptly changes the ball’s
position and velocity. In the extreme case, the snapshot at t1 may be taken such,
that the ball is in the exact same position before and after the collision, i. e. in the
time t′ ∈ [t0, t1] the ball moves away from its original position, collides with the
wall, and then moves back to its original position. An analysis of the billiards data
does in fact show these patterns. STOVE’s estimates of the velocities are tightly
linked to the position differences observed by SuPAIR. As x1 = x0 it follows that
STOVE’s estimate of v1 must incorrectly conclude v1 ∝ x1 − x0 = 0. While the
approximated velocity information is generally helpful for predicting future states, it
provides wrong information around collisions, which demonstrates the need for an
abstract latent space. This abstract latent may at t1 choose to remember v0 from t0
and help the dynamics network to predict the collision v1 = −v0 correctly. The above
argument for ball-wall collisions holds similarly for collisions between balls. This
line of reasoning should also make it clear, why we do not predict new positions
from offsets given by the observed velocities in STOVE, but rather opt for the more
general formulation described in Chapter 4.

5.11 Scaling to Additional Objects
Lastly, we briefly explore the scaling capabilities of STOVE to scenes with more
objects. We create a new billiards data set with six objects, increasing the resolution
to 50 by 50 pixels to fit all objects on the screen. Adaptations to STOVE were
necessary to model this scenario successfully: The exact matching routine between
timesteps was replaced with a greedy matching routine, which is computationally
cheaper. However, the main bottleneck for STOVE in this scenario seems to be the
image model, which tends to merge nearby objects, predicting one large bounding
box for two or more balls. To avoid this, we restrict the maximum allowable object
size to 1/5 of the image size. We also reintroduce an overlap penalty for the bounding
boxes as in Stelzner et al. (2019). With these modifications, STOVE successfully
scales to six objects, producing rollouts which do not merge objects and display
convincing collision behaviour. Figure 5.15 displays example frames of the obtained
model rollouts. A conservation of energy could not be obtained in this scenario, and
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the object velocities decrease noticeably during rollouts. The problems with merging
objects are likely an indication of the limits of the sequential attention mechanism in
the image model. The number of parameters in the dynamics network is independent
of the number of objects. However, the size of the tensors propagated through the
GNN scales with O(O2). While the above scaling test of STOVE may be considered
successful, it is also likely that any scaling of STOVE to scenes with more objects or
larger canvasses will require further adaptations to the model architecture.
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6Concluding Thoughts

This final chapter contains a closing discussion of the main findings of the thesis
with a particular emphasis on resulting directions for future work, as well as a
summary.

6.1 Discussion and Future Work
Many of the previous unstructured sequence prediction work focuses on scenarios
of high visual dimensionality but with simple dynamics. This remains true even for
many of the object-specific approaches such as SQAIR and DDPAE. Conversely, much
of the previous work on physics prediction targets low observation dimensionality but
complicated dynamics. The novelty and strength of STOVE lies in the combination of
high-dimensional visual input and non-linear relational dynamics in an unsupervised
fashion.

As observed by Kosiorek et al. (2018), the extension of AIR to videos is natural, and
the sequential nature of videos aids the consistent discovery of objects. With the
introduction of STOVE, this thesis has demonstrated the successful combination of
AIR-like image models and powerful relational physics modelling. Capable transition
models are an important component of video modelling. They allow for accurate
future state predictions and planning in downstream applications. However, if the
transition model underfits the true dynamics of the environment, a model may still
obtain decent reconstructions in the simple scenarios presented in this thesis and
many other publications. In other words, here, dynamics information is not crucial
to obtaining good reconstructions. Nevertheless, in future applications and more
complex modelling scenarios, powerful transition models may prove essential for
inference of noisy and complex observations. This further motivates the reuse of
the dynamics model for both generation and inference. As interactions with the
environment are important in almost all real-world applications, we argue for the
proliferation of relational reasoning mechanisms in video models.

Many preceding video models have not concentrated on the quality of rollout predic-
tions, preferring to investigate reconstructions instead. Furthermore, if they do show
rollouts, often, the absence of animated visualisations makes it hard to judge the
predictive performance of the model. Likewise, the presented timeframes should be
long enough to allow the viewer to come to a conclusion concerning the prediction
stability. Additionally, our discussion of the chaoticness of the frequently used bil-
liards environment has exposed subtleties with regards to simple error metrics based
on the prediction performance. Most notably, rollout error curves look strikingly
similar between models with entirely different dynamics performance. For example,
STOVE, with convincing and stable predictions, exhibits error curves closely related
to the linear baseline, a most unrealistic model, simply because they have the same
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initial observation uncertainty. Therefore, we argue for the inclusion of other quanti-
tative measures, such as physical conservation laws, when applicable to demonstrate
the plausibility of the learned model. Alternatively, the model’s usefulness may be
demonstrated by applying it on downstream tasks such as planning.

A challenge in many object-aware models is the need for careful design of model
complexity. If the object models are made too powerful, they may learn to approxi-
mate the whole scene instead of single objects. Only by introducing artificial capacity
bottlenecks in the object model can we entice the architecture to use the object
mechanism. This reliance on bottlenecks to elicit objects is unsatisfactory, and we
hope that videos, together with capable transition models, provide a strong enough
object prior to break the above failure modes. Our work has provided first steps in
this direction. However, so far, reliable object-aware video modelling and future
state prediction remain unsolved in scenarios with complex visuals.

SQAIR in particular has a very complex and overparametrised structure, as the
authors themselves note (Kosiorek et al., 2018). Where STOVE performs a simple
multiplication of distributions, see Eq. (4.6), SQAIR uses general-purpose MLPs that
are provided with as much information as available. Similarly contrasting design
choices are made in almost all other components of STOVE and SQAIR, see Kosiorek
et al. (2018, Algorithm 2-3). While this might make SQAIR hard to train, debug,
or interpret, STOVE contains many assumptions which are too restricting for some
applications. How can we build models whose structure guides them with useful
prior knowledge but does not restrict them? For STOVE, we may have achieved this
with respect to the simple physical simulation data. However, it is unclear, how to
successfully extend this to more complex settings. We will now present some more
concrete directions for future work. They are loosely sorted from easy to implement
and likely to succeed to challenging or vague albeit interesting.

Varying Object Counts. Extending STOVE to accommodate sequences with varying
object numbers should be straightforward, as long as the number of objects per
sequence is fixed. This extension would reintroduce the total number of objects O as
a random variable, and we could proceed similarly as in SuPAIR. If the number of
objects should be allowed to vary within the sequence, additional complexity due
to modules for re-recognising objects from previous frames and discovering new
objects, similar to SQAIR, could likely not be avoided. For an extension to large
object counts, parallel attention mechanisms such as in Crawford and Pineau (2019)
or Jiang et al. (2020) would need to be adopted.

Object Matching. While the object state matching routine of STOVE is a simple and
effective solution, its algorithmic complexity of O(O3) may present a limiting factor
in future applications. Also, matching states based on Euclidean position distances is
not desirable when objects overlap heavily. Since the conception of STOVE, different
approaches to handling similar problems have emerged. Inspired by Miladinović et al.
(2019), the matching problem could be solved by first creating state proposals from
an unchanged dynamics model. Then, the image model could get these proposals
as input and predict correctional offsets to the proposed states, conditioned on both
the proposal and the observation. An explicit matching is not required anymore,
because the image model is aware of the object order proposed by the dynamics
model. Veerapaneni et al. (2019) proceed similarly, using the image model to
refine predictions from the dynamics model. Instead of directly predicting offsets to
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states, Veerapaneni et al. (2019) refine parameter guesses using iterative variational
inference. By entangling the image and dynamics model, we could proceed similarly
to the above for STOVE and obviate the need for a matching routine. However, the
trade-off between matching complexity and component entanglement needs to be
investigated.

Extensions to the SSM. The position estimates obtained by the SuPAIR image
model of STOVE are completely independent of all previous observations. While
these strict independence assumptions are first and foremost a strength of STOVE
and lead to a fast inference routine, it is likely that the inclusion of smoothing or
filtering mechanisms is necessary for scenarios with high observation noise or visual
complexity. Section 2.3 has introduced many ways of constructing such non-linear
state space models. Even VRNN, which is an early example of such models and
which has flaws that have been discussed by subsequent work, has shown somewhat
admirable performance in Chapter 5 on complex data that it was not designed for.
We are therefore confident that the approaches of Section 2.3 would likely yield
strong results when adapted to object-based image modelling and relational physics.
Because these approaches already expect highly non-linear emission and transition
distributions, the extension of STOVE to such models should be straightforward.
That being said, the discussions in Section 2.3 and Karl et al. (2017a) reveal that the
interaction of appearance and dynamics modelling is non-trivial. Thus, approaches
such as Karl et al. (2017a) or Fraccaro et al. (2017), which can regularise the use of
the dynamics model, are particularly promising.

Conservation of Energy. Section 5.5 has shown that STOVE correctly conserves the
average kinetic energy of the rollouts. Unfortunately, we can only offer speculation
as to how STOVE achieves this conservation and must leave everything else for the
future. More importantly, future work should focus on building models which reliably
achieve a conservation of relevant physical quantities. Neural ODEs, introduced in
Chapter 3, offer a promising path towards specifying models, which, depending on
the exact specification, may conserve relevant quantities by design. Successfully
applying these models to videos of discontinuous processes, such as the billiards
environment, or more general and complex dynamics has not been done, but is a
fruitful avenue for future work.

More Complex Object Models. The SuPAIR-like image model in STOVE is derived
from AIR and therefore limited to rectangular object bounding boxes. While SuPAIR
already presents some improvements over AIR, such approaches are not appropriate
for more complex data encountered in real-world applications. In Chapter 3, we
introduced MONet and follow-up work, which presents a more flexible approach
to object-aware image modelling, predicting pixel-wise object masks. Extensions
of such models to relational video prediction are interesting future work. After
the publication of Kossen et al. (2020), Voelcker (2020) performed experiments
with an adaptation of STOVE to MONet-like image models. While the results are
promising, in general, the approach is brittle and requires careful hyperparameter
tuning. Unlike STOVE, MONet features object-wise unstructured latents, which leads
to the entangling of appearance and dynamics information in the latent space. This
may be a reason for the observed instabilities and, therefore, the approaches of
Section 2.3 may provide inspiration on how to move forward. Other recent work
by Veerapaneni et al. (2019) or Watters et al. (2019) extends MONet to discrete
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dynamics, e. g. block-stacking tasks or moving sprites. Scaling object-aware image
models and relational physics modules to realistic videos is an excellent challenge
for future work.

Low-Dimensional Dynamics. For applications in reinforcement learning or robotics,
full-scale video modelling of future frames in complex visual settings might not be
the only research direction. Depending on the application, it might be preferable to
directly focus dynamics modelling efforts on lower-dimensional latents, from which
quantities relevant to acting in the environment can directly be predicted, similar to
Dosovitskiy and Koltun (2017), Farquhar et al. (2018), or Schrittwieser et al. (2019).
These quantities should be easier to model than high-dimensional visuals. Here,
relational dynamics models could prove beneficial to obtaining good transitional
models. However, it is not always obvious, what should constitute an object in such
abstract transition models. A possible answer to this question is provided by Kipf
et al. (2020), who learn a useful object-specific latent embedding without relying on
a reconstruction loss.

General Relational Prediction. The application of Graph Neural Networks (GNNs)
for learning physics simulations is well-established. However, in Section 5.4, we
were able to show that, excitingly, the GNN continues to perform well even when not
all objects follow the same dynamical laws. This could pave the way for relational
reasoning modules for more general kinds of interactions. In the real world or video
games, object trajectories are often determined by interactions with the environment
or between objects. Relational reasoning modules in object-aware video models
may provide a way to efficiently learn about these interactions, even when they
are more abstract than physical laws and dynamics are allowed to differ between
objects. For example, future models may be able to learn the interactions that
govern the movement of objects in ATARI video games. In turn, knowledge of
these interactions is then invaluable for acting in the environment. While our
initial experiments in Section 5.4 proved successful without any modifications to
the architecture, it seems likely that modifications to the GNN are needed in more
complex settings. For example, one could explicitly introduce latent variables that
assign different dynamics submodules, inspired by work on continual or multi-task
learning. Alternatively, the modelling choice could be made implicit by including
additional attention or gating mechanisms, which let the GNN infer the appropriate
dynamics mode between object pairs. A similar approach is chosen in Ehrhardt et al.
(2019), albeit not in the context of relational physics prediction.

6.2 Summary
Objects and intuitive physics are of central importance to human reasoning. With
the motivation to bring such capabilities to machine learning models, we have
introduced STOVE. STOVE presents a structured, object-aware approach to video
modelling, extending attend-infer-repeat models to videos of physically interacting
objects. We assemble STOVE as a non-linear state space model: The transition
distribution is given by a relational physics module, a graph neural network, and the
emission distribution is realised with a SuPAIR-like image module. STOVE is trained
in a self-supervised fashion directly from pixels. Unlike generic approaches, STOVE
makes use of a variety of structuring assumptions, such as the object-awareness,
explicit positions, velocities, and object sizes in the latent space, the reuse of the
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generative dynamics model for inference, as well as the structural assumptions
imposed by the graph neural network. These assumptions seem to empower rather
than restrict STOVE, as the experimental evaluation has shown clear improvements
over previous, less structured video models. In addition, STOVE produces remarkably
stable rollouts, which correctly conserve the kinetic energy of the simulation in the
billiards scenario. There, investigations into the chaoticness of the environment
suggest that STOVE is close to optimal performance considering the resolution of
the data.

Many exciting directions for future work have been presented. While some strive
for increased visual modelling complexity, others attempt generalisations of the dy-
namics model. However, they all share the overarching vision that object-awareness
and relational reasoning present important inductive biases. They should be seen
as general-purpose mechanisms with broad relevancy for many areas of machine
learning. STOVE presents a valuable contribution to this vision.
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AModel Details1

A.1 Recognition Model Architecture
The object detection network for q(zt, (pos, size) | xt) is realised by an LSTM (Hochre-
iter and Schmidhuber, 1997) with 256 hidden units, which outputs the means and
variances of the object’s latent state, i. e. 2 · 2 · 2 = 8 parameters per object.

The Random SPN for the objects is created with parameters (R = 6, D = 2, S =
10, C = 1, I = 10), see Section 2.4. Similarly, the Random SPN for the background
is created with parameters (R = 3, D = 1, S = 6, C = 1, I = 3). Leaf distributions
are modelled as factorised Gaussians, where means and variances are learnable
parameters. The structure for the background SPN is simpler to avoid STOVE relying
entirely on the background model for reconstructions, neglecting object-abstractions
entirely, see Stelzner et al. (2019). The above values are similar to those in Stelzner
et al. (2019) and are valid for all experiments of the thesis. Appendix A.4 lists
further hyperparameter choices.

A.2 Generative Model Architecture
For zot,latent, we choose dimensionality 12, such that a full state

zot =
(
zot, pos, z

o
t, size, z

o
t, velo, z

o
t, latent

)
(A.1)

is 18-dimensional.

The dynamics prediction is given by the following series of transformations applied
to each input state of shape (Nb, O, l), where Nb is the batch size, O the number of
objects, and L = 16 the total size of the latent space per object for the dynamics
prediction without the size parameters.

• S1: Encode input state with linear layer [L, 2L].
• S2: Apply linear layer [2L, 2L] to S1 followed by ReLU non-linearity.
• S3: Apply linear layer [2L, 2L] to S2 and add result to S2. This gives the

dynamics prediction without relational effects, corresponding to N(zot ) in
Eq. (4.3).

• C1: The following steps obtain the relational aspects of dynamics prediction,
corresponding to I(zot , z

o′
t ) in Eq. (4.3). Concatenate the encoded state So

1

pairwise with all state encodings, yielding a tensor of shape (Nb, O,O, 4L).
• C2: Apply linear layer [4L, 4L] to C1 followed by ReLU.
• C3: Apply linear layer [4L, 2L] to C2 followed by ReLU.
• C4: Apply linear layer [2L, 2L] to C3 and add to C3.

1Appendices A.1 to A.3 appear in similar form in the concurrently published Kossen et al. (2020).
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• A1: To obtain attention coefficients α(zot , z
o′
t ), apply linear layer [4L, 4L] to C1

followed by ReLU.
• A2: Apply linear layer [4L, 2L] to A1 followed by ReLU.
• A3: Apply linear layer [2L, 1] to A2 and apply exponential function.
• R1: Multiply C4 with A3, where diagonal elements of A3 are masked out to

ensure that R1 only covers cases where o 6= o′.
• R2: Sum over R1 for all o′, to obtain tensor of shape (Nb, O, 2L). This is the

relational dynamics prediction.
• D1: Sum relational dynamics R2 and self-dynamics S3, obtaining the input to
A in Eq. (4.3).

• D2: Apply linear layer [2L, 2L] to D1 followed by tanh non-linearity.
• D3: Apply linear layer [2L, 2L] to D2 followed by tanh non-linearity and add

result to D2.
• D4: Concatenate D3 and S1, see U in Eq. (4.3), and apply linear layer [4L, 2L]

followed by tanh.
• D5: Apply linear layer [2L, 2L] to D4 and add result to D4 to obtain the final

dynamics prediction.

The output D5 has shape (Nb, O, 2L), twice the size of L to account for the vari-
ances of the variational state prediction q(zt+1 | zt). For the generative dynamics
p(zt+1 | zt), the predicted variances are ignored and fixed ones used instead.

For the model-based control scenario, the one-hot encoded actions of shape (Nb, A),
where A is the number of actions, are transformed with a linear layer [A,O · E],
where E is the size of the action-encoding, and reshaped to (A,O,E). We set
A = 9 and E = 4 for the experiments in this thesis. The action embedding and the
object appearances (Nb, O, 3) are then concatenated to the input state. The rest of
the dynamics prediction follows as above. The reward prediction consists of the
following steps:

• H1: Apply linear layer [2L, 2L] to D1 followed by ReLU.
• H2: Apply linear layer [2L, 2L] to H1.
• H3: Sum over object dimension to obtain tensor of shape (Nb, 2L).
• H4: Apply linear layer [2L,L] to H3 followed by ReLU.
• H5: Apply linear layer [L,L/2] to H4 followed by ReLU.
• H5: Apply linear layer [L/2, 1] to H4 followed by a sigmoid non-linearity.

H5 then gives the final reward prediction.

A.3 Model Initialisation
In the first two timesteps, we cannot yet apply STOVE’s main inference step
q(zt | zt−1,xt,xt−1) as described above. In order to initialise the latent state over
the first two frames, we apply a simplified architecture and only use a partial state
at t = 0.

At t = 0, z0 ∼ q(z0, (pos, size) | x0) is given purely by the image model, since no
previous states which could be propagated, exist. This initial z0 is incomplete
insofar as it does not contain velocity information or unstructured latents. At t = 1,
q(z1, (pos, size) | x1,x0) is still given purely based on the object attention network.
Note that for a dynamics prediction of z1, velocity information at t = 0 would
need to be available. However, at t = 1, velocities can be constructed based on
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the differences between the previously inferred object positions. We sample z1,latent
from the normally distributed prior to assemble the first full initial state z1. At
t ≥ 2, the full inference network can be run: States are inferred both from the
attention network q(zt | xt,xt−1) as well as propagated using the dynamics model
q(zt | zt−1).

In the generative model, similar adjustments are made: p(z0, (pos, size)) is given by a
uniform prior, velocities and latents are omitted. At t = 1, velocities are sampled
from a uniform distribution in planar coordinates p(z1, velo) and positions are given
by a simple linear dynamics model

p(z1,pos | z0,pos, z1,velo) = N (z0,pos + z1,velo,σ
2) . (A.2)

Latents z1,latent are sampled from a Gaussian prior. Starting at t = 2, the full
dynamics model is used.

A.4 Hyperparameter Settings
The following list gives the default settings for hyperparameters in STOVE. They are
also part of config.py in the provided code base.

Data Parameters:

num_visible = 8 # Number of visible frames per sequence.
num_episodes = 1000 # Number of generated sequences.
num_frames = 100 # Number of frames per sequence.
channels = 1 # Use black and white images.
num_obj = 3 # Number of objects.

Training Configuration:

batch_size = 256
cl = 32 # Twice the latent space dimension for the dynamics model.
# See adjust_learning_rate() in train.py for further information.
learning_rate = 0.002 # Inital and maximum learning rate.
min_learning_rate = 0.0002 # Minimum learning rate, see above.
debug_anneal_lr = 40000.0 # Learning rate decrease, see above.
num_epochs = 400 # Total number of epochs.
debug_amsgrad = True # Fix Adam gradients.

Model Config: Action-Conditioned:

# Reward trade-off for combined loss, inverse to variance on reward dist.
debug_reward_factor = 15000
# No. of steps during which reward loss linearly increases.
debug_reward_rampup = 20000
# Add object appearance to dynamics prediction.
debug_core_appearance = False
debug_appearance_dim = 3

Model Config – Dynamics:
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# Standard deviations on the generative dynamics model.
transition_lik_std = [0.01, 0.01, 0.01, 0.01]
debug_nonlinear = 'relu' # Nonlinearity used in dynamics core.
# Bound on inferred standard deviation on latents.
debug_latent_q_std = 0.04

Model Config – SPN:

debug_bw = True # Do not model colours in SPN.
# No. of pixels used to model objects in SPN.
patch_height = 10
patch_width = 10
# Bounds on variance for leaves in object-SPN.
obj_min_var = 0.12
obj_max_var = 0.35
# Bounds on variance for leaves in background-SPN.
bg_min_var = 0.002
bg_max_var = 0.16
# Maximum object variances for SuPAIR q-distributions.
scale_var = 0.3
pos_var = 0.3
# Bounds for mean of width of bounding box relative to canvas width.
min_obj_scale = 0.1
max_obj_scale = 0.8
# Bounds for mean of height of bounding box relative to width.
min_y_scale = 0.75
max_y_scale = 1.25
# Max and min object position relative to canvas.
obj_pos_bound = 0.9
# Number of leaf distributions and sums.
obj_spn_num_gauss = 10
obj_spn_num_sums = 10
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BBaselines1

Following Kosiorek et al. (2018), we experimented with different hyperparameter
configurations for VRNNs. We varied the sizes of the hidden and latent states
[h, z], experimenting with the values [256, 16], [512, 32], [1024, 64], and [2048, 32].
We found that increasing the model capacity beyond [512, 32] did not yield large
increases in performance, which is why we chose the configuration [512, 32] for
our experiments. Our VRNN implementation is written in PyTorch and based on
github.com/emited/VariationalRecurrentNeuralNetwork. VRNN and all models
below were trained until convergence.

SQAIR can handle a variable number of objects in each sequence. However, to
allow for a fairer comparison to STOVE, we fixed the number of objects to the
correct number. This means that in the first timestep, exactly three objects are
discovered, which are then propagated in all following timesteps, without further
discoveries. Our implementation is based on the original implementation provided
by the authors at github.com/akosiorek/sqair. Experiments with SQAIR in this thesis
were performed by Karl Stelzner. We thank Adam Kosiorek for his help with the
implementation.

The DDPAE experiments were performed using the implementation available at
github.com/jthsieh/DDPAE-video-prediction from the original authors. Default
parameters for training DDPAE with the billiards datasets are provided by the authors.
However, the resolutions of our billiards (32 pixels) and gravity (50 pixels) data are
different from the resolution DDPAE expects (64 pixels). While we experimented
with adjusting DDPAE parameters, such as the latent space dimension, to fit our
different resolutions, the best results were obtained when bilinearly scaling our
data to the resolution DDPAE expects. DDPAE was trained for 400 000 steps, which
sufficed for convergence of the models’ test set error.

The linear baseline was obtained as follows: For the first 8 frames, we infer the
full model state using a fully trained STOVE model. We then take the last inferred
positions and velocities of each object and predict future positions by assuming
constant uniform motions for each object. We do not allow objects to leave the
frame, i. e. when objects reach the canvas boundary after some timesteps, they stick
to it.

Since our dynamics model requires only object positions and velocities as input, it
is trivial to construct a supervised baseline for physics prediction by replacing the
SuPAIR-inferred states with real, ground-truth states from the environment. On these,
the model can then be trained in a supervised fashion. As with STOVE, we allow the
supervised baseline extra modelling capabilities by introducing unstructured latent

1Chapter appears in similar form in the concurrently published Kossen et al. (2020).
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space in addition to the ground-truth input. The loss function per input sequence is
given by

1

T

T∑
t=1

γt ‖z̃t − zt‖2 , (B.1)

where z̃t are position and velocity predictions for all objects, zt true states, γ = 0.98
exponentially discounts predictions, and T = 8 as for the full STOVE.
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Acronyms

AESMC Auto-Encoding Sequential Monte Carlo.

AIR Attend-Infer-Repeat.

ARMA Autoregressive-Moving Average.

BRNN Bidirectional Recurrent Neural Network.

CNN Convolutional Neural Network.

ConvLSTM Convolutional LSTM.

DDPAE Decompositional Disentangled Predictive Autoencoder.

DKF Deep Kalman Filter.

DMM Deep Markov Model.

DVBF Deep Variational Bayes.

ELBO Evidence Lower Bound.

EM Expectation Maximisation.

GAN Generative Adversarial Network.

GNN Graph Neural Network.

GRU Gated Recurrent Unit.

HMM Hidden Markov Model.

IN Interaction Network.

IWAE Importance-Weighted Autoencoder.

KL divergence Kullback-Leibler Divergence.

KVAE Kalman Variational Autoencoder.

LDS Linear Dynamical System.

LG-SSM Linear Gaussian State-Space Model.

LHS Left-Hand Side.

LSTM Long-Short Term Memory.

MCMC Markov Chain Monte Carlo.

MCTS Monte-Carlo Tree Search.
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MDN Mixture Density Network.

MFVI Mean-field Variational Inference.

MLP Multilayer Perceptron.

MONet Multi-Object Network.

MPE Most Probable Explanation.

MSE Mean Squared Error.

NEM Neural Expectation Maximisation.

Neural ODE Neural Ordinary Differential Equation.

NPE Neural Prediction Engine.

NTM Neural Turing Machine.

PGM Probabilistic Graphical Model.

R-NEM Relational Neural Expectation Maximisation.

Random SPN Random Sum-Product Network.

RHS Right-Hand Side.

RN Relation Network.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SGVB Stochastic Gradient Variational Bayes.

SPN Sum-Product Network.

SQAIR Sequential Attend-Infer-Repeat.

SRNN Stochastic Recurrent Neural Network.

SSM State-Space Model.

STORN Stochastic Recurrent Network.

STOVE Structured Object-Aware Physics Prediction for Video Modelling and Plan-
ning.

SuPAIR Sum-Product Attend-Infer-Repeat.

SVI Stochastic Variational Inference.

VAE Variational Autoencoder.

VI Variational Inference.

VIN Visual Interaction Network.

VRNN Variational Recurrent Neural Network.
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